1
|
Hadar PN, Moura LMVR. Clinical Applications of Artificial Intelligence in Neurology Practice. Continuum (Minneap Minn) 2025; 31:583-600. [PMID: 40179410 DOI: 10.1212/con.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
ABSTRACT As artificial intelligence (AI) tools become increasingly mainstream, they can potentially transform neurology clinical practice by improving patient care and reducing clinician workload. However, with these promises also come perils, and neurologists must understand AI as it becomes integrated into health care. This article presents a brief background on AI and explores some of the potential applications in health care and neurology clinical practice with a focus on improving diagnostic testing, documentation, and clinical workflows and highlighting opportunities to address long-standing human biases and challenges and potential mitigation strategies.
Collapse
|
2
|
Caroppo A, Manni A, Rescio G, Carluccio AM, Siciliano PA, Leone A. Movement Disorders and Smart Wrist Devices: A Comprehensive Study. SENSORS (BASEL, SWITZERLAND) 2025; 25:266. [PMID: 39797057 PMCID: PMC11723440 DOI: 10.3390/s25010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
In the medical field, there are several very different movement disorders, such as tremors, Parkinson's disease, or Huntington's disease. A wide range of motor and non-motor symptoms characterizes them. It is evident that in the modern era, the use of smart wrist devices, such as smartwatches, wristbands, and smart bracelets is spreading among all categories of people. This diffusion is justified by the limited costs, ease of use, and less invasiveness (and consequently greater acceptability) than other types of sensors used for health status monitoring. This systematic review aims to synthesize research studies using smart wrist devices for a specific class of movement disorders. Following PRISMA-S guidelines, 130 studies were selected and analyzed. For each selected study, information is provided relating to the smartwatch/wristband/bracelet model used (whether it is commercial or not), the number of end-users involved in the experimentation stage, and finally the characteristics of the benchmark dataset possibly used for testing. Moreover, some articles also reported the type of raw data extracted from the smart wrist device, the implemented designed algorithmic pipeline, and the data classification methodology. It turned out that most of the studies have been published in the last ten years, showing a growing interest in the scientific community. The selected articles mainly investigate the relationship between smart wrist devices and Parkinson's disease. Epilepsy and seizure detection are also research topics of interest, while there are few papers analyzing gait disorders, Huntington's Disease, ataxia, or Tourette Syndrome. However, the results of this review highlight the difficulties still present in the use of the smartwatch/wristband/bracelet for the identified categories of movement disorders, despite the advantages these technologies could bring in the dissemination of low-cost solutions usable directly within living environments and without the need for caregivers or medical personnel.
Collapse
Affiliation(s)
- Andrea Caroppo
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy; (G.R.); (A.M.C.); (P.A.S.); (A.L.)
| | - Andrea Manni
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy; (G.R.); (A.M.C.); (P.A.S.); (A.L.)
| | | | | | | | | |
Collapse
|
3
|
Tatum WO, Acton EK, Freund B, de la Cruz Gutierrez M, Feyissa AM, Brigham T. Smartphone use in Neurology: a bibliometric analysis and visualization of things to come. Front Neurol 2023; 14:1237839. [PMID: 38073630 PMCID: PMC10703293 DOI: 10.3389/fneur.2023.1237839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Smartphones are a ubiquitous part of society with increasing use as a healthcare tool. We aimed to analyze the published literature on smartphone usage within the field of Neurology to define the scientific landscape and forecast future research initiatives. METHODS We performed a bibliometric review of smartphone uses in Neurology based on a search of two Web of Science databases from inception through September 16, 2022. This librarian-guided review was conducted using Bibliometrix for data assessment and visualization. Temporal trends in publications, citation counts, collaborations, and author affiliations were among key metrics evaluated. VOS viewer identified hot spots based on generating co-occurrences and bibliographic coupling mapping. RESULTS Our search found 3,920 publications. The U.S. produced the most topic-based publications, collaborating most frequently with U.K., Canada, and China-based authors. The most prolific institutions included Karolinska Institute, University of Sydney, and University of Pittsburgh. Bioelectromagnetics, Stroke, and Neurology were the most cited journals. Rapid growth in scientific production occurred in recent years, including during the COVID-19 pandemic. Hotspots and keyword co-occurrence included telehealth, machine learning, and self-management. Temporal trends reflect transitioning from a focus of initial publications regarding mobile phone safety to more recent application of smartphones as "smart" tools for single modality diagnosis, monitoring, management, and treatment of neurological diseases. DISCUSSION There has been rapid expansion of the published literature on smartphone uses in Neurology. Initial focus on smartphones and health risk has shifted to uses for neurological disease diagnosis, detection, and management, with relevance as a global interface for collaboration and clinical practice.
Collapse
Affiliation(s)
- William O. Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | - Emily K. Acton
- Departments of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Brin Freund
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | | | | | - Tara Brigham
- Mayo Clinic Libraries, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
4
|
Manning A, Han V, Stephens A, Wang R, Bush N, Bard M, Ramirez JM, Kalume F. Elevated susceptibility to exogenous seizure triggers and impaired interneuron excitability in a mouse model of Leigh syndrome epilepsy. Neurobiol Dis 2023; 187:106288. [PMID: 37704057 PMCID: PMC10621616 DOI: 10.1016/j.nbd.2023.106288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/12/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023] Open
Abstract
Mutations in the NADH dehydrogenase (ubiquinone reductase) iron‑sulfur protein 4 (NDUFS4) gene, which encodes for a key structural subunit of the OXFOS complex I (CI), lead to the most common form of mitochondrial disease in children known as Leigh syndrome (LS). As in other mitochondrial diseases, epileptic seizures constitute one of the most significant clinical features of LS. These seizures are often very difficult to treat and are a sign of poor disease prognosis. Mice with whole-body Ndufs4 KO are a well-validated model of LS; they exhibit epilepsy and several other clinical features of LS. We have previously shown that mice with Ndufs4 KO in only GABAergic interneurons (Gad2-Ndufs4-KO) reproduce the severe epilepsy phenotype observed in the global KO mice. This observation indicated that these mice represent an excellent model of LS epilepsy isolated from other clinical manifestations of the disease. To further characterize this epilepsy phenotype, we investigated seizure susceptibility to selected exogenous seizure triggers in Gad2-Ndufs4-KO mice. Then, using electrophysiology, imaging, and immunohistochemistry, we studied the cellular, physiological, and neuroanatomical consequences of Ndufs4 KO in GABAergic interneurons. Homozygous KO of Ndufs4 in GABAergic interneurons leads to a prominent susceptibility to exogenous seizure triggers, impaired interneuron excitability and interneuron loss. Finally, we found that the hippocampus and cortex participate in the generation of seizure activity in Gad2-Ndufs4-KO mice. These findings further define the LS epilepsy phenotype and provide important insights into the cellular mechanisms underlying epilepsy in LS and other mitochondrial diseases.
Collapse
Affiliation(s)
- Arena Manning
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States of America; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Victor Han
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Alexa Stephens
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Rose Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Nicholas Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Michelle Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Jan M Ramirez
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States of America; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America; Department of Neurological Surgery, University of Washington, Seattle, WA, United States of America
| | - Franck Kalume
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States of America; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America; Department of Neurological Surgery, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
5
|
Næsgaard JAR, Gjerstad L, Heuser K, Taubøll E. Biological rhythms and epilepsy treatment. Front Neurol 2023; 14:1153975. [PMID: 37638185 PMCID: PMC10453794 DOI: 10.3389/fneur.2023.1153975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Approximately one-third of patients with epilepsy are drug-refractory, necessitating novel treatment approaches. Chronopharmacology, which adjusts pharmacological treatment to physiological variations in seizure susceptibility and drug responsiveness, offers a promising strategy to enhance efficacy and tolerance. This narrative review provides an overview of the biological foundations for rhythms in seizure activity, clinical implications of seizure patterns through case reports, and the potential of chronopharmacological strategies to improve treatment. Biological rhythms, including circadian and infradian rhythms, play an important role in epilepsy. Understanding seizure patterns may help individualize treatment decisions and optimize therapeutic outcomes. Altering drug concentrations based on seizure risk periods, adjusting administration times, and exploring hormone therapy are potential strategies. Large-scale randomized controlled trials are needed to evaluate the efficacy and safety of differential and intermittent treatment approaches. By tailoring treatment to individual seizure patterns and pharmacological properties, chronopharmacology offers a personalized approach to improve outcomes in patients with epilepsy.
Collapse
Affiliation(s)
| | - Leif Gjerstad
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, ERGO – Epilepsy Research Group of Oslo, Oslo University Hospital, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Division of Clinical Neuroscience, ERGO – Epilepsy Research Group of Oslo, Oslo University Hospital, Oslo, Norway
| | - Erik Taubøll
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, ERGO – Epilepsy Research Group of Oslo, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Wheless JW, Friedman D, Krauss GL, Rao VR, Sperling MR, Carrazana E, Rabinowicz AL. Future Opportunities for Research in Rescue Treatments. Epilepsia 2022; 63 Suppl 1:S55-S68. [PMID: 35822912 PMCID: PMC9541657 DOI: 10.1111/epi.17363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Clinical studies of rescue medications for seizure clusters are limited and are designed to satisfy regulatory requirements, which may not fully consider the needs of the diverse patient population that experiences seizure clusters or utilize rescue medication. The purpose of this narrative review is to examine the factors that contribute to, or may influence the quality of, seizure cluster research with a goal of improving clinical practice. We address five areas of unmet needs and provide advice for how they could enhance future trials of seizure cluster treatments. The topics addressed in this article are: (1) unaddressed end points to pursue in future studies, (2) roles for devices to enhance rescue medication clinical development programs, (3) tools to study seizure cluster prediction and prevention, (4) the value of other designs for seizure cluster studies, and (5) unique challenges of future trial paradigms for seizure clusters. By focusing on novel end points and technologies with value to patients, caregivers, and clinicians, data obtained from future studies can benefit the diverse patient population that experiences seizure clusters, providing more effective, appropriate care as well as alleviating demands on health care resources.
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Daniel Friedman
- New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory L Krauss
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vikram R Rao
- University of California, San Francisco, California, USA
| | | | - Enrique Carrazana
- Neurelis, San Diego, California, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | |
Collapse
|