1
|
Fontes MRM, Cardoso FF, Kobe B. Transport of DNA repair proteins to the cell nucleus by the classical nuclear importin pathway - a structural overview. DNA Repair (Amst) 2025; 149:103828. [PMID: 40154194 DOI: 10.1016/j.dnarep.2025.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
DNA repair is a crucial biological process necessary to address damage caused by both endogenous and exogenous agents, with at least five major pathways recognized as central to this process. In several cancer types and other diseases, including neurodegenerative disorders, DNA repair mechanisms are often disrupted or dysregulated. Despite the diversity of these proteins and their roles, they all share the common requirement of being imported into the cell nucleus to perform their functions. Therefore, understanding the nuclear import of these proteins is essential for comprehending their roles in cellular processes. The first and best-characterized nuclear targeting signal is the classical nuclear localization sequence (NLS), recognized by importin-α (Impα). Several structural and affinity studies have been conducted on complexes formed between Impα and NLSs from DNA repair proteins, although these represent only a fraction of all known DNA repair proteins. These studies have significantly advanced our understanding of the nuclear import process of DNA repair proteins, often revealing unexpected results that challenge existing literature and computational predictions. Despite advances in computational, biochemical, and cellular assays, structural methods - particularly crystallography and in-solution biophysical approaches - continue to play a critical role in providing insights into molecular events operating in biological pathways. In this review, we aim to summarize experimental structural and affinity studies involving Impα and NLSs from DNA repair proteins, with the goal of furthering our understanding of the function of these essential proteins.
Collapse
Affiliation(s)
- Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
| | - Fábio F Cardoso
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 381] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
3
|
Matsuyama S, Palmer J, Bates A, Poventud-Fuentes I, Wong K, Ngo J, Matsuyama M. Bax-induced apoptosis shortens the life span of DNA repair defect Ku70-knockout mice by inducing emphysema. Exp Biol Med (Maywood) 2017; 241:1265-71. [PMID: 27302174 DOI: 10.1177/1535370216654587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cells with DNA damage undergo apoptosis or cellular senescence if the damage cannot be repaired. Recent studies highlight that cellular senescence plays a major role in aging. However, age-associated diseases, including emphysema and neurodegenerative disorders, are caused by apoptosis of lung alveolar epithelial cells and neurons, respectively. Therefore, enhanced apoptosis also promotes aging and shortens the life span depending on the cell type. Recently, we reported that ku70(-) (/) (-)bax(-) (/) (-) and ku70(-) (/) (-)bax(+/) (-) mice showed significantly extended life span in comparison with ku70(-) (/) (-)bax(+/+) mice. Ku70 is essential for non-homologous end joining pathway for DNA double strand break repair, and Bax plays an important role in apoptosis. Our study suggests that Bax-induced apoptosis has a significant impact on shortening the life span of ku70(-) (/) (-) mice, which are defective in one of DNA repair pathways. The lung alveolar space gradually enlarges during aging, both in mouse and human, and this age-dependent change results in the decrease of respiration capacity during aging that can lead to emphysema in more severe cases. We found that emphysema occurred in ku70(-) (/) (-) mice at the age of three-months old, and that Bax deficiency was able to suppress it. These results suggest that Bax-mediated apoptosis induces emphysema in ku70(-) (/) (-) mice. We also found that the number of cells, including bronchiolar epithelial cells and type 2 alveolar epithelial cells, shows a higher DNA double strand break damage response in ku70 KO mouse lung than in wild type. Recent studies suggest that non-homologous end joining activity decreases with increased age in mouse and rat model. Together, we hypothesize that the decline of Ku70-dependent DNA repair activity in lung alveolar epithelial cells is one of the causes of age-dependent decline of lung function resulting from excess Bax-mediated apoptosis of lung alveolar epithelial cells (and their progenitor cells).
Collapse
Affiliation(s)
- Shigemi Matsuyama
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - James Palmer
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Adam Bates
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | | | - Kelvin Wong
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Justine Ngo
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Mieko Matsuyama
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| |
Collapse
|
4
|
Li Y, Wu Y, Zheng X, Cong J, Liu Y, Li J, Sun R, Tian ZG, Wei HM. Cytoplasm-Translocated Ku70/80 Complex Sensing of HBV DNA Induces Hepatitis-Associated Chemokine Secretion. Front Immunol 2016; 7:569. [PMID: 27994596 PMCID: PMC5136554 DOI: 10.3389/fimmu.2016.00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a serious disease, mainly due to its severe pathological consequences, which are difficult to cure using current therapies. When the immune system responds to hepatocytes experiencing rapid HBV replication, effector cells (such as HBV-specific CD8+ T cells, NK cells, NKT cells, and other subtypes of immune cells) infiltrate the liver and cause hepatitis. However, the precise recruitment of these cells remains unclear. In the present study, we found that the cytoplasm-translocated Ku70/80 complex in liver-derived cells sensed cytosolic HBV DNA and promoted hepatitis-associated chemokine secretion. Upon sensing HBV DNA, DNA-dependent protein kinase catalytic subunit and PARP1 were assembled. Then, IRF1 was activated and translocated into the nucleus, which upregulated CCL3 and CCL5 expression. Because CCR5, a major chemokine receptor for CCL3 and CCL5, is known to be critical in hepatitis B, Ku70/80 sensing of HBV DNA likely plays a critical role in immune cell recruitment in response to HBV infection.
Collapse
Affiliation(s)
- Young Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yang Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Jingjing Cong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Rui Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Zhigang G Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Haiming M Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| |
Collapse
|
5
|
Iuchi K, Yagura T. DNA binding activity of Ku during chemotherapeutic agent-induced early apoptosis. Exp Cell Res 2016; 342:135-44. [PMID: 26976509 DOI: 10.1016/j.yexcr.2016.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023]
Abstract
Ku protein is a heterodimer composed of two subunits, and is capable of both sequence-independent and sequence-specific DNA binding. The former mode of DNA binding plays a crucial role in DNA repair. The biological role of Ku protein during apoptosis remains unclear. Here, we show characterization of Ku protein during apoptosis. In order to study the DNA binding properties of Ku, we used two methods for the electrophoresis mobility shift assay (EMSA). One method, RI-EMSA, which is commonly used, employed radiolabeled DNA probes. The other method, WB-EMSA, employed unlabeled DNA followed by western blot and detection with anti-Ku antiserum. In this study, Ku-DNA probe binding activity was found to dramatically decrease upon etoposide treatment, when examined by the RI-EMSA method. In addition, pre-treatment with apoptotic cell extracts inhibited Ku-DNA probe binding activity in the non-treated cell extract. The inhibitory effect of the apoptotic cell extract was reduced by DNase I treatment. WB-EMSA showed that the Ku in the apoptotic cell extract bound to fragmented endogenous DNA. Interestingly, Ku in the apoptotic cell extract purified by the Resource Q column bound 15-bp DNA in both RI-EMSA and WB-EMSA, whereas Ku in unpurified apoptotic cell extracts did not bind additional DNA. These results suggest that Ku binds cleaved chromosomal DNA and/or nucleosomes in apoptotic cells. In conclusion, Ku is intact and retains DNA binding activity in early apoptotic cells.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Bioscience, Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuin, Sanda-shi, Hyogo-ken 669-1337, Japan.
| | - Tatsuo Yagura
- Department of Bioscience, Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuin, Sanda-shi, Hyogo-ken 669-1337, Japan
| |
Collapse
|
6
|
Ngo J, Matsuyama M, Kim C, Poventud-Fuentes I, Bates A, Siedlak SL, Lee HG, Doughman YQ, Watanabe M, Liner A, Hoit B, Voelkel N, Gerson S, Hasty P, Matsuyama S. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis 2015; 6:e1706. [PMID: 25811803 PMCID: PMC4385910 DOI: 10.1038/cddis.2015.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/13/2023]
Abstract
Ku70 (Lupus Ku autoantigen p70) is essential in nonhomologous end joining DNA double-strand break repair, and ku70−/− mice age prematurely because of increased genomic instability and DNA damage responses. Previously, we found that Ku70 also inhibits Bax, a key mediator of apoptosis. We hypothesized that Bax-mediated apoptosis would be enhanced in the absence of Ku70 and contribute to premature death observed in ku70−/− mice. Here, we show that ku70−/−bax+/− and ku70−/−bax−/− mice have better survival, especially in females, than ku70−/− mice, even though Bax deficiency did not decrease the incidence of lymphoma observed in a Ku70-null background. Moreover, we found that ku70−/− mice develop lung diseases, like emphysema and pulmonary arterial (PA) occlusion, by 3 months of age. These lung abnormalities can trigger secondary health problems such as heart failure that may account for the poor survival of ku70−/− mice. Importantly, Bax deficiency appeared to delay the development of emphysema. This study suggests that enhanced Bax activity exacerbates the negative impact of Ku70 deletion. Furthermore, the underlying mechanisms of emphysema and pulmonary hypertension due to PA occlusion are not well understood, and therefore ku70−/− and Bax-deficient ku70−/− mice may be useful models to study these diseases.
Collapse
Affiliation(s)
- J Ngo
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Matsuyama
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - C Kim
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - I Poventud-Fuentes
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Bates
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - S L Siedlak
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H-G Lee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Y Q Doughman
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Watanabe
- 1] Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Liner
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - B Hoit
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - N Voelkel
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Pulmonary Obstructive Research, Virginia Commonwealth University, Richmond, VA, USA
| | - S Gerson
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - P Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX, USA
| | - S Matsuyama
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Koike M, Yutoku Y, Koike A. Impact of amino acid substitutions in two functional domains of Ku80: DNA-damage-sensing ability of Ku80 and survival after irradiation. J Vet Med Sci 2013; 76:51-6. [PMID: 24025432 PMCID: PMC3979949 DOI: 10.1292/jvms.13-0283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Various chemotherapeutic drugs, such as etoposide, and ionizing radiation (IR)
have been clinically applied for the treatment of many types of animal and human
malignancies. IR and chemotheraputic drugs kill tumor cells mainly by inducing DNA
double-strand breaks (DSBs). On the other hand, unrepaired or incorrectly repaired DSBs
can lead to chromosomal truncations and translocations, which can contribute to the
development of cancer in humans and animals. Thus, it is important to clarify the
molecular mechanisms underlying the chemosensitivity or radiosensitivity of mammalian
cells in order to develop medical treatments and next-generation chemotherapeutic drugs
for cancer. Previously, we established and analyzed cell lines stably expressing chimeric
constructs of EGFP and the wild-type Ku80 (XRCC5) protein or its mutant protein to which
mutations were introduced by the site-directed mutagenesis. We found that the Ku70
(XRCC6)-binding-site mutations (A453H/V454H) of Ku80 and nuclear localization signal
(NLS)-dysfunctional mutations (K565A/K566A/K568A) affected the ability to complement
etoposide sensitivity. In this study, we examined the radiosensitivity of these cell
lines. We found that either or both amino acid substitutions in two functional domains of
Ku80, i.e., Ku70-binding-site mutations (A453H/V454H) and NLS-dysfunctional mutations
(K565A/K566A/K568A), affect the ability to complement radiosensitivity. Moreover, these
mutations in the two domains of Ku80 affect the DSB-sensing ability of Ku80. These
information and Ku80 mutant cell lines used might be useful for the study of not only the
dynamics and function of Ku80, but also the molecular mechanism underlying the cellular
response to IR and chemotherapeutic drugs in mammalian cells.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
8
|
Cabrero J, Bakkali M, Navarro-Domínguez B, Ruíz-Ruano FJ, Martín-Blázquez R, López-León MD, Camacho JPM. The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species. Chromosome Res 2013; 21:393-406. [PMID: 23797468 DOI: 10.1007/s10577-013-9367-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 01/05/2023]
Abstract
The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase-anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans.
Collapse
Affiliation(s)
- Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/989272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.
Collapse
|
10
|
Quanz M, Herbette A, Sayarath M, de Koning L, Dubois T, Sun JS, Dutreix M. Heat shock protein 90α (Hsp90α) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem 2012; 287:8803-15. [PMID: 22270370 DOI: 10.1074/jbc.m111.320887] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90α (Hsp90α) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90α then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90α was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90α. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90α were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90α may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone.
Collapse
Affiliation(s)
- Maria Quanz
- Institut Curie, CNRS UMR3347, INSERM U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Du T, Caragounis A, Parker SJ, Meyerowitz J, La Fontaine S, Kanninen KM, Perreau VM, Crouch PJ, White AR. A potential copper-regulatory role for cytosolic expression of the DNA repair protein XRCC5. Free Radic Biol Med 2011; 51:2060-72. [PMID: 21971347 DOI: 10.1016/j.freeradbiomed.2011.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 11/20/2022]
Abstract
Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.
Collapse
Affiliation(s)
- Tai Du
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Accumulation of Ku70 at DNA double-strand breaks in living epithelial cells. Exp Cell Res 2011; 317:2429-37. [PMID: 21820429 DOI: 10.1016/j.yexcr.2011.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 12/18/2022]
Abstract
Ku70 and Ku80 play an essential role in the DNA double-strand break (DSB) repair pathway, i.e., nonhomologous DNA-end-joining (NHEJ). No accumulation mechanisms of Ku70 at DSBs have been clarified in detail, although the accumulation mechanism of Ku70 at DSBs plays key roles in regulating the NHEJ activity. Here, we show the essential domains for the accumulation and function of Ku70 at DSBs in living lung epithelial cells. Our results showed that EGFP-Ku70 accumulation at DSBs began immediately after irradiation. Our findings demonstrate that three domains of Ku70, i.e., the α/β, DNA-binding, and Ku80-binding domains, but not the SAP domain, are necessary for the accumulation at or recognition of DSBs in the early stage after irradiation. Moreover, our findings demonstrate that the leucine at amino acid 385 of Ku70 in the Ku80-binding domain, but not the three target amino acids for acetylation in the DNA-binding domain, is involved in the localization and accumulation of Ku70 at DSBs. Furthermore, accumulations of XRCC4 and XLF, but not that of Artemis, at DSBs are dependent on the presence of Ku70. These findings suggest that Artemis can work in not only the Ku-dependent repair process, but also the Ku-independent process at DSBs in living epithelial cells.
Collapse
|
13
|
Takeda AAS, de Barros AC, Chang CW, Kobe B, Fontes MRM. Structural basis of importin-α-mediated nuclear transport for Ku70 and Ku80. J Mol Biol 2011; 412:226-34. [PMID: 21806995 DOI: 10.1016/j.jmb.2011.07.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 10/18/2022]
Abstract
Ku70 and Ku80 form a heterodimeric complex involved in multiple nuclear processes. This complex plays a key role in DNA repair due to its ability to bind DNA double-strand breaks and facilitate repair by the nonhomologous end-joining pathway. Ku70 and Ku80 have been proposed to contain bipartite and monopartite nuclear localization sequences (NLSs), respectively, that allow them to be translocated to the nucleus independently of each other via the classical importin-α (Impα)/importin-β-mediated nuclear import pathway. To determine the structural basis of the recognition of Ku70 and Ku80 proteins by Impα, we solved the crystal structures of the complexes of Impα with the peptides corresponding to the Ku70 and Ku80 NLSs. Our structural studies confirm the binding of the Ku80 NLS as a classical monopartite NLS but reveal an unexpected binding mode for Ku70 NLS with only one basic cluster bound to the receptor. Both Ku70 and Ku80 therefore contain monopartite NLSs, and sequences outside the basic cluster make favorable interactions with Impα, suggesting that this may be a general feature in monopartite NLSs. We show that the Ku70 NLS has a higher affinity for Impα than the Ku80 NLS, consistent with more extensive interactions in its N-terminal region. The prospect of nuclear import of Ku70 and Ku80 independently of each other provides a powerful regulatory mechanism for the function of the Ku70/Ku80 heterodimer and independent functions of the two proteins.
Collapse
Affiliation(s)
- Agnes A S Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP 18618-970, Brazil
| | | | | | | | | |
Collapse
|
14
|
KOIKE M, YUTOKU Y, KOIKE A. Establishment of Ku70-Deficient Lung Epithelial Cell Lines and Their Hypersensitivity to Low-Dose X-Irradiation. J Vet Med Sci 2011; 73:549-54. [DOI: 10.1292/jvms.10-0454] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Manabu KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
| | - Yasutomo YUTOKU
- DNA Repair Gene Res., National Institute of Radiological Sciences
- Graduate School of Science, Chiba University
| | - Aki KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
| |
Collapse
|
15
|
Ty1 integrase overexpression leads to integration of non-Ty1 DNA fragments into the genome of Saccharomyces cerevisiae. Mol Genet Genomics 2010; 284:231-42. [PMID: 20677012 PMCID: PMC2939329 DOI: 10.1007/s00438-010-0561-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/08/2010] [Indexed: 10/25/2022]
Abstract
The integrase of the Saccharomyces cerevisiae retrotransposon Ty1 integrates Ty1 cDNA into genomic DNA likely via a transesterification reaction. Little is known about the mechanisms ensuring that integrase does not integrate non-Ty DNA fragments. In an effort to elucidate the conditions under which Ty1 integrase accepts non-Ty DNA as substrate, PCR fragments encompassing a selectable marker gene were transformed into yeast strains overexpressing Ty1 integrase. These fragments do not exhibit similarity to Ty1 cDNA except for the presence of the conserved terminal dinucleotide 5'-TG-CA-3'. The frequency of fragment insertion events increased upon integrase overexpression. Characterization of insertion events by genomic sequencing revealed that most insertion events exhibited clear hallmarks of integrase-mediated reactions, such as 5 bp target site duplication and target site preferences. Alteration of the terminal dinucleotide abolished the suitability of the PCR fragments to serve as substrates. We hypothesize that substrate specificity under normal conditions is mainly due to compartmentalization of integrase and Ty cDNA, which meet in virus-like particles. In contrast, recombinant integrase, which is not confined to virus-like particles, is able to accept non-Ty DNA, provided that it terminates in the proper dinucleotide sequence.
Collapse
|
16
|
KOIKE M, KOIKE A, SUGASAWA J, TOYOOKA T, IBUKI Y. Dynamics of Ku80 in Living Hamster Cells with DNA Double-Strand Breaks Induced by Chemotherapeutic Drugs. J Vet Med Sci 2010; 72:1405-12. [DOI: 10.1292/jvms.10-0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Manabu KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
| | - Aki KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
| | - Jun SUGASAWA
- DNA Repair Gene Res., National Institute of Radiological Sciences
| | - Tatsushi TOYOOKA
- Laboratory of Radiation Biology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| | - Yuko IBUKI
- Laboratory of Radiation Biology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| |
Collapse
|
17
|
Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS, Zou Y, Margaritis LH, Boothman DA, Gonos ES. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 2009; 15:48-59. [PMID: 19118032 PMCID: PMC4483278 DOI: 10.1158/1078-0432.ccr-08-1805] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Secretory clusterin (sCLU)/apolipoprotein J is an extracellular chaperone that has been functionally implicated in DNA repair, cell cycle regulation, apoptotic cell death, and tumorigenesis. It exerts a prosurvival function against most therapeutic treatments for cancer and is currently an antisense target in clinical trials for tumor therapy. However, the molecular mechanisms underlying its function remained largely unknown. EXPERIMENTAL DESIGN The molecular effects of small interfering RNA-mediated sCLU depletion in nonstressed human cancer cells were examined by focusing entirely on the endogenously expressed sCLU protein molecules and combining molecular, biochemical, and microscopic approaches. RESULTS We report here that sCLU depletion in nonstressed human cancer cells signals stress that induces p53-dependent growth retardation and high rates of endogenous apoptosis. We discovered that increased apoptosis in sCLU-depleted cells correlates to altered ratios of proapoptotic to antiapoptotic Bcl-2 protein family members, is amplified by p53, and is executed by mitochondrial dysfunction. sCLU depletion-related stress signals originate from several sites, because sCLU is an integral component of not only the secretory pathway but also the nucleocytosolic continuum and mitochondria. In the cytoplasm, sCLU depletion disrupts the Ku70-Bax complex and triggers Bax activation and relocation to mitochondria. We show that sCLU binds and thereby stabilizes the Ku70-Bax protein complex serving as a cytosol retention factor for Bax. CONCLUSIONS We suggest that elevated sCLU levels may enhance tumorigenesis by interfering with Bax proapoptotic activities and contribute to one of the major characteristics of cancer cells, that is, resistance to apoptosis.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular and Cellular Aging, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Koike M, Sugasawa J, Yasuda M, Koike A. Tissue-specific DNA-PK-dependent H2AX phosphorylation and γ-H2AX elimination after X-irradiation in vivo. Biochem Biophys Res Commun 2008; 376:52-5. [DOI: 10.1016/j.bbrc.2008.08.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/18/2008] [Indexed: 11/25/2022]
|
19
|
Koike M, Mashino M, Sugasawa J, Koike A. Histone H2AX phosphorylation independent of ATM after X-irradiation in mouse liver and kidney in situ. JOURNAL OF RADIATION RESEARCH 2008; 49:445-449. [PMID: 18413980 DOI: 10.1269/jrr.08010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Histone H2AX undergoes phosphorylation at Ser-139 (gamma-H2AX) rapidly in response to DNA double-strand breaks (DSBs) induced by ionizing radiation. The post-translational modification of H2AX plays a central role in responses to radiation, including the repair of DSBs. Although ataxia telangiectasia mutated (ATM) kinase phosphorylates Ser-139 of H2AX in vitro, the post-translational modification pattern and the modifier of H2AX in organs in vivo are not yet well understood. In this study, we detected phosphorylation of H2AX at Ser-139 in cells of the mouse ear, liver, and kidney after X-irradiation. Moreover, the phosphorylation of H2AX was regulated depending on not only the cell type, but also the organ type and the localization of a cell type in an organ. Following X-irradiation, H2AX was phosphorylated in the liver and kidney of ATM gene knockout mice, suggesting that ATM kinase is not essential for phosphorylation of H2AX in these organs after X-irradiation in vivo.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Research, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Japan.
| | | | | | | |
Collapse
|
20
|
Yurchenko V, Xue Z, Gama V, Matsuyama S, Sadofsky MJ. Ku70 is stabilized by increased cellular SUMO. Biochem Biophys Res Commun 2007; 366:263-8. [PMID: 18062920 DOI: 10.1016/j.bbrc.2007.11.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 11/27/2007] [Indexed: 11/26/2022]
Abstract
Ku70 is a protein that finds itself at the heart of several important cellular processes. It is essential to the non-homologous end joining pathway as a part of the DNA-end binding complex, required for proper maintenance of telomeres and contributes to DNA damage recognition and regulation of apoptosis. Forces that regulate Ku70 are therefore likely to have large consequences on the physiologic state of the cell. We report here that transient expression of the small protein SUMO resulted in a dramatic increase in the abundance of Ku70. Surprisingly, the direct SUMOylation of Ku70 does not appear to be required for this effect. Rather, Ku70 appears to be stabilized through indirect effects on the rate of degradation. The same outcome was obtained by raising the expression of enzymes that promote SUMOylation. It is likely that many other proteins will be similarly regulated, providing a general control of cellular state.
Collapse
Affiliation(s)
- Vyacheslav Yurchenko
- Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
21
|
Koike M, Koike A. Accumulation of Ku80 proteins at DNA double-strand breaks in living cells. Exp Cell Res 2007; 314:1061-70. [PMID: 18164703 DOI: 10.1016/j.yexcr.2007.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 01/14/2023]
Abstract
Ku plays a key role in multiple nuclear processes, e.g., DNA double-strand break (DSB) repair. The regulation mechanism of the localizations of Ku70 and Ku80 plays a key role in regulating the multiple functions of Ku. Although numerous biochemical studies in vitro have elucidated the DNA binding mechanism of Ku, no accumulation mechanisms of Ku70 and Ku80 at DSBs have been clarified in detail in vivo. In this study, we examined the accumulation mechanism of Ku80 at DSBs in living cells. EGFP-Ku80 accumulation at DSBs began immediately after irradiation. On the other hand, our data show that Ku70 alone, which has DNA binding activity independent of Ku80, cannot accumulate at the DSBs, whereas Ku70 bound to Ku80 can. The deletion of the C-terminal DNA-PKcs-binding domain and the mutation at the SUMOylation site of Ku80 had no effect on Ku80 accumulation. Unexpectedly, N-terminal deletion mutants of Ku80 fully lost their accumulation activity, although the mutants retained their Ku70 binding activity. Altogether, these data demonstrate that Ku80 is essential for Ku70 accumulation at DSBs. Furthermore, three domains of Ku80, i.e., the N-terminal alpha/beta, the DNA-binding, and Ku70-binding domains, seem to necessary for the accumulation at or recognition of DSBs in the early stage after irradiation.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Res., National Institute of Radiological Sciences, Chiba, Japan.
| | | |
Collapse
|
22
|
Dynamic change of histone H2AX phosphorylation independent of ATM and DNA-PK in mouse skin in situ. Biochem Biophys Res Commun 2007; 363:1009-12. [DOI: 10.1016/j.bbrc.2007.09.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 01/07/2023]
|
23
|
Ji P, Bäumer N, Yin T, Diederichs S, Zhang F, Beger C, Welte K, Fulda S, Berdel WE, Serve H, Müller-Tidow C. DNA damage response involves modulation of Ku70 and Rb functions by cyclin A1 in leukemia cells. Int J Cancer 2007; 121:706-13. [PMID: 17455244 DOI: 10.1002/ijc.22634] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyclin A1 plays a critical role in hematopoietic malignancies, notably, acute myeloid leukemia. The molecular mechanisms of cyclin A1 action are incompletely understood. Here, we show that cyclin A1 functions are mediated by the retinoblastoma and the Ku70 pathway. High levels of cyclin A1 and the associated CDK2 kinase activity were associated with increasing levels of phosphorylated retinoblastoma in vivo. UV irradiation induced a switch of the CDK2 towards cyclin A1, with accordance to changes in CDK2 kinase activity. The C-terminus of cyclin A1 directly interacted with Ku70, and DNA binding activity of Ku70 was modulated by cyclin A1/CDK2 and phosphatase treatment. Cyclin A1-deficiency induced by shRNA increased apoptosis that is induced by DNA damage and death receptor ligands. Taken together, these analyses demonstrate that cyclin A1 exerts antiapoptotic functions by interacting with retinoblastoma and Ku proteins in leukemia cells.
Collapse
Affiliation(s)
- Ping Ji
- Department of Medicine, Hematology and Oncology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang Y, Zhou J, Cao X, Zhang Q, Lim CUK, Ullrich RL, Bailey SM, Liber HL. Partial deficiency of DNA-PKcs increases ionizing radiation-induced mutagenesis and telomere instability in human cells. Cancer Lett 2006; 250:63-73. [PMID: 17095151 DOI: 10.1016/j.canlet.2006.09.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/14/2006] [Accepted: 09/22/2006] [Indexed: 12/21/2022]
Abstract
The correct repair of DNA double-strand breaks (DSBs) is essential to maintaining the integrity of the genome. Misrepair of DSBs is detrimental to cells and organisms, leading to gene mutation, chromosomal aberration, and cancer development. Nonhomologous end-joining (NHEJ) is one of the principal rejoining processes in most higher eukaryotic cells. NHEJ is facilitated by DNA-dependent protein kinase (DNA-PK), which is composed of a catalytic subunit, DNA-PKcs, and the heterodimeric DNA binding regulatory complex Ku70/86. Null mutation of DNA-PKcs leads to immunodeficiency, chromosomal aberration, gene mutation, telomeric end-capping failure, and cancer predisposition in animals and cells. However, it is unknown whether partial deficiency of DNA-PKcs as might occur in a fraction of the population (e.g., heterozygotes), influences cellular function. Using small interfering RNA (siRNA) transfection, we established partial deficiency of DNA-PKcs in human cells, ranging from 4 to 85% of control levels. Our results reveal for the first time, that partial deficiency of DNA-PKcs leads to increased ionizing radiation (IR)-induced mutagenesis, cell killing, and telomere dysfunction. Radiation mutagenesis was increased inversely with DNA-PKcs protein level, with the most pronounced effect being observed in cells with protein levels below 50% of controls. A small but statistically significant increase in IR-induced cell killing was observed as DNA-PKcs levels decreased, over the entire range of protein levels. Frequencies of IR-induced telomere-DSB fusion was increased at levels of DNA-PKcs as low as approximately 50%, similar to what would be expected in heterozygous individuals. Taken together, our results suggest that even partial deficiency of DNA repair proteins may represent a considerable risk to genomic stability.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou J, Lim CUK, Li JJ, Cai L, Zhang Y. The role of NBS1 in the modulation of PIKK family proteins ATM and ATR in the cellular response to DNA damage. Cancer Lett 2006; 243:9-15. [PMID: 16530324 PMCID: PMC3658610 DOI: 10.1016/j.canlet.2006.01.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 01/10/2023]
Abstract
Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases have been considered the primary activators of the cellular response to DNA damage. They belong to the protein kinase family, phosphoinositide 3-kinase-related kinase (PIKKs). In human beings, deficiency of these kinases leads to hereditary diseases, namely ataxia telangiectasia (AT) with ATM deficiency and ATR-Seckel with ATR deficiency. NBS1, a component of MRE11/RAD50/NBS1 (MRN) complex, is another important player in DNA damage response (DDR). Mutations of NBS1 are responsible for Nijmegen breakage syndrome (NBS), a human hereditary disease with the characteristics that almost encompassed those of AT and ATR-Seckel. NBS1 has been conventionally thought to be a downstream substrate of ATM and ATR in DDR; however, recent studies suggest that NBS1/MRN functions upstream of both ATM and ATR by recruiting them to the proximity of DNA damage sites and activating their functions. In this mini-review, we would emphasize the requirement of NBS1 as an upstream mediator for the modulation of PIKK family proteins ATM and ATR.
Collapse
Affiliation(s)
- Junqing Zhou
- Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, CO 80521, USA
| | - Chang UK Lim
- Cancer Center, Ordway Research Institute, 150 New Scotland Avenue Rm 4133, Albany, NY 12208, USA
| | - Jian Jian Li
- Division of Molecular Radiobiology, Purdue University School of Health Sciences, West Lafayette, IN 47907, USA
| | - Lu Cai
- Department of Medicine and Radiation Oncology, University of Louisville, School of Medicine, Louisville, KT 40202, USA
| | - Ying Zhang
- Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
26
|
Expression and subcellular localization of DNA-PK in nasopharyngeal carcinoma cell lines CNE1 and CNE2 with different radiosensitivity. Chin J Cancer Res 2006. [DOI: 10.1007/s11670-006-0077-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|