1
|
Sheikholeslami K, Ali Sher A, Lockman S, Kroft D, Ganjibakhsh M, Nejati-Koshki K, Shojaei S, Ghavami S, Rastegar M. Simvastatin Induces Apoptosis in Medulloblastoma Brain Tumor Cells via Mevalonate Cascade Prenylation Substrates. Cancers (Basel) 2019; 11:cancers11070994. [PMID: 31319483 PMCID: PMC6678292 DOI: 10.3390/cancers11070994] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma is a common pediatric brain tumor and one of the main types of solid cancers in children below the age of 10. Recently, cholesterol-lowering “statin” drugs have been highlighted for their possible anti-cancer effects. Clinically, statins are reported to have promising potential for consideration as an adjuvant therapy in different types of cancers. However, the anti-cancer effects of statins in medulloblastoma brain tumor cells are not currently well-defined. Here, we investigated the cell death mechanisms by which simvastatin mediates its effects on different human medulloblastoma cell lines. Simvastatin is a lipophilic drug that inhibits HMG-CoA reductase and has pleotropic effects. Inhibition of HMG-CoA reductase prevents the formation of essential downstream intermediates in the mevalonate cascade, such as farnesyl pyrophosphate (FPP) and gernaylgerany parophosphate (GGPP). These intermediates are involved in the activation pathway of small Rho GTPase proteins in different cell types. We observed that simvastatin significantly induces dose-dependent apoptosis in three different medulloblastoma brain tumor cell lines (Daoy, D283, and D341 cells). Our investigation shows that simvastatin-induced cell death is regulated via prenylation intermediates of the cholesterol metabolism pathway. Our results indicate that the induction of different caspases (caspase 3, 7, 8, and 9) depends on the nature of the medulloblastoma cell line. Western blot analysis shows that simvastatin leads to changes in the expression of regulator proteins involved in apoptosis, such as Bax, Bcl-2, and Bcl-xl. Taken together, our data suggests the potential application of a novel non-classical adjuvant therapy for medulloblastoma, through the regulation of protein prenylation intermediates that occurs via inhibition of the mevalonate pathway.
Collapse
Affiliation(s)
- Kimia Sheikholeslami
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Annan Ali Sher
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Sandhini Lockman
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Daniel Kroft
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Meysam Ganjibakhsh
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Kazem Nejati-Koshki
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, BMSB 627, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
2
|
Seong DY, Kim YJ. Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 146:34-43. [DOI: 10.1016/j.jphotobiol.2015.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
|
3
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
4
|
Magnussen GI, Ree Rosnes AK, Shahzidi S, Dong HP, Emilsen E, Engesæter B, Flørenes VA. Synthetic retinoid CD437 induces apoptosis and acts synergistically with TRAIL receptor-2 agonist in malignant melanoma. Biochem Biophys Res Commun 2012; 420:516-22. [PMID: 22446330 DOI: 10.1016/j.bbrc.2012.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/09/2022]
Abstract
The novel synthetic retinoid, CD437, shows potent anti-tumor activity in a range of different cancer cell lines and now serves as a prototype for development of new retinoid related molecules (RRMs). The purpose of this study was to examine the effect and cellular targets of CD437 in the human metastatic melanoma cell lines FEMX-1 and WM239. We showed that treatment with CD437 led to cell cycle arrest and induced apoptosis through both the extrinsic- and intrinsic pathways (caspase 8, -9 and PARP cleavage) in both cell lines. Interestingly, apoptosis was induced independently of DNA-fragmentation in FEMX-1 cells, and appeared partially caspase-independent in the WM239 cells. Additionally, up-regulation of CHOP mRNA and cathepsin D protein expression, following retinoid treatment, suggests involvement of the endoplasmatic reticulum (ER) and lysosomes, respectively. Combination of suboptimal concentrations of CD437 and lexatumumab, a TRAIL death receptor-2 agonist, resulted in synergistic reduction of viable cells, along with increased PARP cleavage. These results indicate that CD437 has a strong anti-neoplastic effect alone and in combination with lexatumumab in melanoma cell lines.
Collapse
Affiliation(s)
- Gry Irene Magnussen
- Department of Pathology, Institute for Cancer Research, The Norwegian Radium Hospital, 0424 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
5
|
Wu SJ, Lee SJ, Su CH, Lin DL, Wang SS, Ng LT. Bioactive constituents and anti-proliferative properties of supercritical carbon dioxide Salvia miltiorrhiza extract in 3T3-L1 adipocytes. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Imai M, Yuan B, Kikuchi H, Saito M, Ohyama K, Hirobe C, Oshima T, Hosoya T, Morita H, Toyoda H. Growth inhibition of a human colon carcinoma cell, COLO 201, by a natural product, <i>Vitex agnus-castus</i> fruits extract, <i>in vivo</i> and <i>in vivo</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abc.2012.21003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Bushue N, Wan YJY. Retinoid pathway and cancer therapeutics. Adv Drug Deliv Rev 2010; 62:1285-98. [PMID: 20654663 DOI: 10.1016/j.addr.2010.07.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 12/18/2022]
Abstract
The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol-binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid x receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with an emphasis on the application of retinoids in cancer treatment and prevention.
Collapse
Affiliation(s)
- Nathan Bushue
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | |
Collapse
|
8
|
Hussain S, Thomassen LCJ, Ferecatu I, Borot MC, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol 2010; 7:10. [PMID: 20398356 PMCID: PMC2873464 DOI: 10.1186/1743-8977-7-10] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/16/2010] [Indexed: 12/13/2022] Open
Abstract
Background Increasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways. Results Detailed time course studies revealed that both CB (13 nm) and TiO2(15 nm) NP exposed cells exhibit typical morphological (decreased cell size, membrane blebbing, peripheral chromatin condensation, apoptotic body formation) and biochemical (caspase activation and DNA fragmentation) features of apoptotic cell death. A decrease in mitochondrial membrane potential, activation of Bax and release of cytochrome c from mitochondria were only observed in case of CB NPs whereas lipid peroxidation, lysosomal membrane destabilization and cathepsin B release were observed during the apoptotic process induced by TiO2 NPs. Furthermore, ROS production was observed after exposure to CB and TiO2 but hydrogen peroxide (H2O2) production was only involved in apoptosis induction by CB NPs. Conclusions Both CB and TiO2 NPs induce apoptotic cell death in bronchial epithelial cells. CB NPs induce apoptosis by a ROS dependent mitochondrial pathway whereas TiO2 NPs induce cell death through lysosomal membrane destabilization and lipid peroxidation. Although the final outcome is similar (apoptosis), the molecular pathways activated by NPs differ depending upon the chemical nature of the NPs.
Collapse
Affiliation(s)
- Salik Hussain
- Université Paris Diderot - Paris 7, Unit of Functional and Adaptive Biology (BFA) CNRS EAC 4413, Laboratory of Molecular and Cellular Responses to Xenobiotics, 75205 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lin Y, Ren L, Wang W, Di J, Zeng S, Saito S. Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice. J Reprod Immunol 2009; 82:12-23. [PMID: 19560213 DOI: 10.1016/j.jri.2009.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 03/18/2009] [Accepted: 03/27/2009] [Indexed: 12/15/2022]
Abstract
Toll-like receptor (TLR)-TLR cross talk is thought to be important in TLR signaling. Herein, we investigated the effect of specific TLR3 and TLR7 agonists, poly (I:C) and R837, individually and in combination, on uterine immune cell function and their subsequent effects on pregnancy outcome. Allogeneic pregnancies in the non-obese diabetic (NOD) mousexC57BL/6 and wild-type BALB/cxC57BL/6 model were used. An additive increase in embryo resorption was observed after induction with both poly (I:C) and R837, and was associated with elevated numbers of both TNF-alpha- and IFN-gamma-producing CD45(+) cells in the uterus. Further examination showed that while cytokine expression was detected in both CD3(+) cells and CD49b(+) cells in BALB/c mice, NOD mouse cells behaved differently. In NOD mice, elevated cytokine expression was attributed to CD3(+) T cells, with no response detected in the CD49b(+) NK cells. The additive effect of combined agonists was partially inhibited by the Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) inhibitor SP600125 and almost completely abrogated by the extracellular signal-regulated kinase (ERK) MAPK inhibitor PD98059. These results suggest that increased TLR3 and TLR7 signals are transmitted via Th1-type T cells, rather than NK cells, in NOD mice. Furthermore, the ERK MAPK pathway may be critical in TLR3 and TLR7 signaling.
Collapse
Affiliation(s)
- Yi Lin
- Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiaotong University, PR China.
| | | | | | | | | | | |
Collapse
|
10
|
Lin Y, Zhong Y, Saito S, Chen Y, Shen W, Di J, Zeng S. Characterization of natural killer cells in nonobese diabetic/severely compromised immunodeficient mice during pregnancy. Fertil Steril 2009; 91:2676-86. [PMID: 18410933 DOI: 10.1016/j.fertnstert.2007.08.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/27/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
|
11
|
Lena A, Rechichi M, Salvetti A, Bartoli B, Vecchio D, Scarcelli V, Amoroso R, Benvenuti L, Gagliardi R, Gremigni V, Rossi L. Drugs targeting the mitochondrial pore act as cytotoxic and cytostatic agents in temozolomide-resistant glioma cells. J Transl Med 2009; 7:13. [PMID: 19196452 PMCID: PMC2661321 DOI: 10.1186/1479-5876-7-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 02/05/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND High grade gliomas are one of the most difficult cancers to treat and despite surgery, radiotherapy and temozolomide-based chemotherapy, the prognosis of glioma patients is poor. Resistance to temozolomide is the major barrier to effective therapy. Alternative therapeutic approaches have been shown to be ineffective for the treatment of genetically unselected glioma patients. Thus, novel therapies are needed. Mitochondria-directed chemotherapy is an emerging tool to combat cancer, and inner mitochondrial permeability transition (MPT) represents a target for the development of cytotoxic drugs. A number of agents are able to induce MPT and some of them target MPT-pore (MPTP) components that are selectively up-regulated in cancer, making these agents putative cancer cell-specific drugs. OBJECTIVE The aim of this paper is to report a comprehensive analysis of the effects produced by selected MPT-inducing drugs (Betulinic Acid, Lonidamine, CD437) in a temozolomide-resistant glioblastoma cell line (ADF cells). METHODS EGFRvIII expression has been assayed by RT-PCR. EGFR amplification and PTEN deletion have been assayed by differential-PCR. Drugs effect on cell viability has been tested by crystal violet assay. MPT has been tested by JC1 staining. Drug cytostatic effect has been tested by mitotic index analysis. Drug cytotoxic effect has been tested by calcein AM staining. Apoptosis has been assayed by Hoechst incorporation and Annexine V binding assay. Authophagy has been tested by acridine orange staining. RESULTS We performed a molecular and genetic characterization of ADF cells and demonstrated that this line does not express the EGFRvIII and does not show EGFR amplification. ADF cells do not show PTEN mutation but differential PCR data indicate a hemizygous deletion of PTEN gene. We analyzed the response of ADF cells to Betulinic Acid, Lonidamine, and CD437. Our data demonstrate that MPT-inducing agents produce concentration-dependent cytostatic and cytotoxic effects in parallel with MPT induction triggered through MPTP. CD437, Lonidamine and Betulinic acid trigger apoptosis as principal death modality. CONCLUSION The obtained data suggest that these pharmacological agents could be selected as adjuvant drugs for the treatment of high grade astrocytomas that resist conventional therapies or that do not show any peculiar genetic alteration that can be targeted by specific drugs.
Collapse
Affiliation(s)
- Annalisa Lena
- Dipartimento di Morfologia Umana e Biologia Applicata, University of Pisa, Via Volta 4, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsuoka S, Tsuchiya H, Sakabe T, Watanabe Y, Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N, Masutani H, Yodoi J, Shiota G. Involvement of thioredoxin-binding protein 2 in the antitumor activity of CD437. Cancer Sci 2008; 99:2485-90. [PMID: 19018770 PMCID: PMC11159347 DOI: 10.1111/j.1349-7006.2008.00979.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present authors previously reported that a synthetic retinoid, CD437, induces endoplasmic reticulum stress-mediated apoptosis in ovarian adenocarcinoma cells in spite of no response to natural retinoids. However, the precise mechanism of its proapoptotic action has not been fully determined. The present study herein demonstrates that apoptosis induction of ovarian adenocarcinoma SKOV3 cells by CD437 involves the upregulation of thioredoxin-binding protein 2 (TBP2) by a mechanism that is dependent on the intracellular calcium concentration. TBP2 is known to bind to and suppress thioredoxin (TRX) activity whereas TRX has an anti-apoptotic effect by inhibiting apoptosis signal-regulating kinase 1 (ASK1). The activation of ASK1 and its downstream molecule, c-Jun N-terminal kinase, was observed after induction of TBP2 by CD437. Interestingly, CD437 induced the association of TBP2 with TRX and, in turn, facilitated the dissociation of ASK1 from TRX. Moreover, blockade of TBP2 induction by small interfering RNA (siRNA) significantly attenuated the cytotoxic effect of CD437. These results suggest that TBP2 plays a critical role in the mechanism by which CD437 exerts proapoptotic action against SKOV3 cells.
Collapse
Affiliation(s)
- Saori Matsuoka
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Nishi-cho 86, Yonago, Tottori 683-8504, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ren J, Peng Z, Pan M, Guo B, Liu Y, Wang X. Comparison between synthetic retinoid CD437 and acitretin inhibiting melanoma A375 cell in vitro. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1007-4376(08)60018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Collingwood TS, Smirnova EV, Bogush M, Carpino N, Annan RS, Tsygankov AY. T-cell ubiquitin ligand affects cell death through a functional interaction with apoptosis-inducing factor, a key factor of caspase-independent apoptosis. J Biol Chem 2007; 282:30920-8. [PMID: 17709377 DOI: 10.1074/jbc.m706870200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lymphoid protein T-cell ubiquitin ligand (TULA)/suppressor of T-cell receptor signaling (Sts)-2 is associated with c-Cbl and ubiquitylated proteins and has been implicated in the regulation of signaling mediated by protein-tyrosine kinases. The results presented in this report indicate that TULA facilitates T-cell apoptosis independent of either T-cell receptor/CD3-mediated signaling or caspase activity. Mass spectrometry-based analysis of protein-protein interactions of TULA demonstrates that TULA binds to the apoptosis-inducing protein AIF, which has previously been shown to function as a key factor of caspase-independent apoptosis. Using RNA interference, we demonstrate that AIF is essential for the apoptotic effect of TULA. Analysis of the subcellular localization of TULA and AIF together with the functional analysis of TULA mutants is consistent with the idea that TULA enhances the apoptotic effect of AIF by facilitating the interactions of AIF with its apoptotic co-factors, which remain to be identified. Overall, our results shed new light on the biological functions of TULA, a recently discovered protein, describing its role as one of very few known functional interactors of AIF.
Collapse
Affiliation(s)
- Therese S Collingwood
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
16
|
Solovyan VT. Characterization of apoptotic pathway associated with caspase-independent excision of DNA loop domains. Exp Cell Res 2007; 313:1347-60. [PMID: 17362930 DOI: 10.1016/j.yexcr.2007.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 12/13/2006] [Accepted: 01/24/2007] [Indexed: 11/26/2022]
Abstract
Excision of chromatin loop domains and internucleosomal DNA fragmentation are widely considered as consecutive stages of chromatin disassembly during apoptosis. We report here on apoptosis induced by staurosporine in NB-2a neuroblastoma cells, which was accompanied by excision of chromatin loop domains, but proceeded without internucleosomal DNA cleavage. In contrast to apoptosis associated with internucleosomal DNA fragmentation, the apoptotic pathway associated with excision of chromatin loop domains was largely caspase independent. We identify here MAPK family member, p38/JNK, mitochondria, and topoisomerase II as the components of this caspase-independent apoptotic pathway. While caspase-independent excision of chromatin loop domains was a predominant mechanism of DNA disintegration in staurosporine-treated neuroblastoma, both caspase-dependent internucleosomal DNA fragmentation and caspase-independent excision of chromatin loop domains accompanied staurosporine-induced apoptosis of promyelocytic leukemia cells. Our results suggest that caspase-independent excision of chromatin loop domains represents a separate cell death pathway, which operates either in parallel or independently from caspase-dependent internucleosomal DNA fragmentation.
Collapse
Affiliation(s)
- Victor T Solovyan
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| |
Collapse
|
17
|
Abstract
The permeability transition pore (PTP) is a multi-protein complex at contact sites of the inner with the outer mitochondrial membrane. Research over the past years has led to the concept that the PTP occupies a central role in cell death induction. Numerous apoptosis signals convert this protein aggregate into an unspecific pore, thus activating mitochondria for the cellular self-destruction process. Here, we describe the evidence for this and the various approaches being undertaken to elucidate its subunit composition and mode of regulation. In particular, we review data that indicate a role of specific PTP subunits for apoptosis inhibition during tumorigenesis.
Collapse
Affiliation(s)
- C Brenner
- University of Versailles/St Quentin, CNRS UMR 8159, Versailles, France.
| | | |
Collapse
|
18
|
Fayazi Z, Ghosh S, Marion S, Bao X, Shero M, Kazemi-Esfarjani P. A Drosophila ortholog of the human MRJ modulates polyglutamine toxicity and aggregation. Neurobiol Dis 2006; 24:226-44. [PMID: 16934481 DOI: 10.1016/j.nbd.2006.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/19/2006] [Accepted: 06/28/2006] [Indexed: 01/13/2023] Open
Abstract
In the Drosophila eye, proteins with an expanded polyglutamine (polyQ) tract form nuclear and cytoplasmic inclusions and produce cytotoxicity, demonstrated as loss of eye pigmentation and structural integrity. An EP P-element that suppressed the loss of eye pigmentation was inserted 9.7 kb upstream of dmrj, a gene that encodes an ortholog of a brain-enriched cochaperone, the human MRJ (mammalian relative of DnaJ). Despite the large distance between them, quantitative polymerase chain reaction indicated that the EP could overexpress dmrj. In the retina and other neurons, transgenic dMRJ suppressed polyQ toxicity and colocalized with its inclusions. In the photoreceptors, expression of another suppressor with a J domain, dHDJ1, but not dMRJ, prior to expression of expanded polyQs dramatically promoted cytoplasmic aggregation. However, both proteins increased the level of detergent-soluble, monomeric polyQ-expanded proteins. These findings exemplify the functional similarities and differences between J domain proteins in suppressing polyQ toxicity.
Collapse
Affiliation(s)
- Zahra Fayazi
- Department of Physiology and Biophysics, Center for Neuroscience, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ho TC, Yang YC, Cheng HC, Wu AC, Chen SL, Chen HK, Tsao YP. Activation of mitogen-activated protein kinases is essential for hydrogen peroxide -induced apoptosis in retinal pigment epithelial cells. Apoptosis 2006; 11:1899-908. [PMID: 16927023 DOI: 10.1007/s10495-006-9403-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinal pigment epithelial (RPE) cells are constantly exposed to oxidative injury while clearing byproducts of photoreceptor turnover, a circumstance thought to be responsible for degenerative retinal diseases. The mechanisms of hydrogen peroxide (H(2)O(2))-induced apoptosis in RPE cells are not fully understood. We studied signal transduction mechanisms of H(2)O(2)-induced apoptosis in the human RPE cell line ARPE-19. Activation of two stress kinases (JNK and p38) occurs during H(2)O(2) stimulation, and H(2)O(2)-mediated cell death was significantly reduced by their specific inhibition. Exposure to a lethal dose of H(2)O(2) elicited Bax translocation to the mitochondria and release of apoptosis-inducing factor (AIF) from the mitochondria, both of which were abolished by either JNK- or p38-specific inhibitors. Both H(2)O(2)-induced cell death and JNK/p38 phosphorylation were partially inhibited by C. difficile toxin B, inhibitor of Rho, Rac, and cdc42. Use of pull-down assays revealed that the small GTPase activated by H(2)O(2) is Rac1. This study is the first to demonstrate that H(2)O(2) induces a Rac1/JNK1/p38 signaling cascade, and that JNK and p38 activation is important for H(2)O(2)-induced apoptosis as well as AIF/Bax translocation of RPE cells.
Collapse
Affiliation(s)
- T-C Ho
- Department of Ophthalmology, The Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Han YH, Cao X, Lin B, Lin F, Kolluri SK, Stebbins J, Reed JC, Dawson MI, Zhang XK. Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt. Oncogene 2006; 25:2974-86. [PMID: 16434970 DOI: 10.1038/sj.onc.1209358] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proapoptotic nuclear receptor family member Nur77 translocates from the nucleus to the mitochondria, where it interacts with Bcl-2 to trigger apoptosis. Nur77 translocation is induced by certain apoptotic stimuli, including the synthetic retinoid-related 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN)/CD437 class. In this study, we investigated the molecular mechanism by which AHPN/CD437 analog (E)-4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces Nur77 nuclear export. Our results demonstrate that 3-Cl-AHPC effectively activated Jun N-terminal kinase (JNK), which phosphorylates Nur77. Inhibition of JNK activation by a JNK inhibitor suppressed 3-Cl-AHPC-induced Nur77 nuclear export and apoptosis. In addition, several JNK upstream activators, including the phorbol ester TPA, anisomycin and MAPK kinase kinase-1 (MEKK1), phosphorylated Nur77 and induced its nuclear export. However, Nur77 phosphorylation by JNK, although essential, was not sufficient for inducing Nur77 nuclear export. Induction of Nur77 nuclear export by MEKK1 required a prolonged MEKK1 activation and was attenuated by Akt activation. Expression of constitutively active Akt prevented MEKK1-induced Nur77 nuclear export. Conversely, transfection of dominant-negative Akt or treatment with a phosphatidylinositol 3-kinase (PI3-K) inhibitor accelerated MEKK1-induced Nur77 nuclear export. Furthermore, mutation of an Akt phosphorylation residue Ser351 in Nur77 abolished the effect of Akt or the PI3-K inhibitor. Together, our results demonstrate that both activation of JNK and inhibition of Akt play a role in translocation of Nur77 from the nucleus to the cytoplasm.
Collapse
MESH Headings
- Adamantane/analogs & derivatives
- Adamantane/pharmacology
- Anisomycin/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/ultrastructure
- Cell Nucleus/metabolism
- Cinnamates/pharmacology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enzyme Activation/drug effects
- Flavonoids/pharmacology
- Humans
- Imidazoles/pharmacology
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/physiology
- MAP Kinase Kinase 7/genetics
- MAP Kinase Kinase 7/pharmacology
- MAP Kinase Kinase Kinase 1/physiology
- Mutagenesis, Site-Directed
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Transport/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/physiology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyridines/pharmacology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Recombinant Fusion Proteins/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Y-H Han
- Burnham Institute for Medical Research, Cancer Center, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sourdeval M, Lemaire C, Deniaud A, Taysse L, Daulon S, Breton P, Brenner C, Boisvieux-Ulrich E, Marano F. Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis. Apoptosis 2006; 11:1545-59. [PMID: 16738803 DOI: 10.1007/s10495-006-8764-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, the toxicity of yperite, SM, and its structural analogue mechlorethamine, HN2, was investigated in a human bronchial epithelial cell line 16HBE. Cell detachment was initiated by caspase-2 activation, down-regulation of Bcl-2 and loss of mitochondrial membrane potential. Only in detached cells, mustards induced apoptosis associated with increase in p53 expression, Bax activation, decrease in Bcl-2 expression, opening of the mitochondrial permeability transition pore, release of cytochrome c, caspase-2, -3, -8, -9 and -13 activation and DNA fragmentation. Apoptosis, occurring only in detached cells, could be recognized as anoikis and the mitochondrion, involved both in cell detachment and subsequent cell death, appears to be a crucial checkpoint. Based on our understanding of the apoptotic pathway triggered by mustards, we demonstrated that inhibition of the mitochondrial pathway by ebselen, melatonin and cyclosporine A markedly prevented mustard-induced anoikis, pointing to these drugs as interesting candidates for the treatment of mustard-induced airway epithelial lesions.
Collapse
Affiliation(s)
- Matthieu Sourdeval
- Labortoire de Cytophysiologie et Toxicologie Cellulaire, Université Paris 7-Denis Diderot, case 70-73, 2 place Jussieu, 75251 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang JY, Della-Fera MA, Nelson-Dooley C, Baile CA. Molecular mechanisms of apoptosis induced by ajoene in 3T3-L1 adipocytes. Obesity (Silver Spring) 2006; 14:388-97. [PMID: 16648609 DOI: 10.1038/oby.2006.52] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Determine the biochemical pathways involved in induction of apoptosis by ajoene, an organosulfur compound from garlic. RESEARCH METHODS AND PROCEDURES Mature 3T3-L1 adipocytes were incubated with ajoene at concentrations up to 200 microM. Viability and apoptosis were quantified using an MTS-based cell viability assay and an enzyme-linked immunosorbent assay for single-stranded DNA (ssDNA), respectively. Intracellular reactive oxygen species (ROS) production was measured based on production of the fluorescent dye, dichlorofluorescein. Activation of the mitogen-activated protein kinases extracellular signal-regulating kinase 1/2 (ERK) and c-Jun-N-terminal kinase (JNK) was shown by Western blot. Western blot was also used to show activation of caspase-3, translocation of apoptosis-inducing factor (AIF) from mitochondria to nucleus, and cleavage of 116-kDa poly(ADP-ribose) polymerase (PARP)-1. RESULTS Ajoene induced apoptosis of 3T3-L1 adipocytes in a dose- and time-dependent manner. Ajoene treatment resulted in activation of JNK and ERK, translocation of AIF from mitochondria to nucleus, and cleavage of 116-kDa PARP-1 in a caspase-independent manner. Ajoene treatment also induced an increase in intracellular ROS level. Furthermore, the antioxidant N-acetyl-L-cysteine effectively blocked ajoene-mediated ROS generation, activation of JNK and ERK, translocation of AIF, and degradation of PARP-1. DISCUSSION These results indicate that ajoene-induced apoptosis in 3T3-L1 adipocytes is initiated by the generation of hydrogen peroxide, which leads to activation of mitogen-activated protein kinases, degradation of PARP-1, translocation of AIF, and fragmentation of DNA. Ajoene can, thus, influence the regulation of fat cell number through the induction of apoptosis and may be a new therapeutic agent for the treatment of obesity.
Collapse
Affiliation(s)
- Jeong-Yeh Yang
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602-2771, USA
| | | | | | | |
Collapse
|