1
|
Jiaerken B, Liu W, Zheng J, Qu W, Wu Q, Ai Z. The SUMO Family: Mechanisms and Implications in Thyroid Cancer Pathogenesis and Therapy. Biomedicines 2024; 12:2408. [PMID: 39457720 PMCID: PMC11505470 DOI: 10.3390/biomedicines12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Small ubiquitin-like modifiers (SUMOs) are pivotal in post-translational modifications, influencing various cellular processes, such as protein localization, stability, and genome integrity. (2) Methods: This review explores the SUMO family, including its isoforms and catalytic cycle, highlighting their significance in regulating key biological functions in thyroid cancer. We discuss the multifaceted roles of SUMOylation in DNA repair mechanisms, protein stability, and the modulation of receptor activities, particularly in the context of thyroid cancer. (3) Results: The aberrant SUMOylation machinery contributes to tumorigenesis through altered gene expression and immune evasion mechanisms. Furthermore, we examine the therapeutic potential of targeting SUMOylation pathways in thyroid cancer treatment, emphasizing the need for further research to develop effective SUMOylation inhibitors. (4) Conclusions: By understanding the intricate roles of SUMOylation in cancer biology, we can pave the way for innovative therapeutic strategies to improve outcomes for patients with advanced tumors.
Collapse
Affiliation(s)
- Bahejuan Jiaerken
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Zheng
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Qu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Wu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Ai
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Xiong X, Huang B, Gan Z, Liu W, Xie Y, Zhong J, Zeng X. Ubiquitin-modifying enzymes in thyroid cancer:Mechanisms and functions. Heliyon 2024; 10:e34032. [PMID: 39091932 PMCID: PMC11292542 DOI: 10.1016/j.heliyon.2024.e34032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system, and evidence suggests that post-translational modifications (PTMs) and epigenetic alterations play an important role in its development. Recently, there has been increasing evidence linking dysregulation of ubiquitinating enzymes and deubiquitinases with thyroid cancer. This review aims to summarize our current understanding of the role of ubiquitination-modifying enzymes in thyroid cancer, including their regulation of oncogenic pathways and oncogenic proteins. The role of ubiquitination-modifying enzymes in thyroid cancer development and progression requires further study, which will provide new insights into thyroid cancer prevention, treatment and the development of novel agents.
Collapse
Affiliation(s)
- Xingmin Xiong
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - BenBen Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Zhe Gan
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weixiang Liu
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
3
|
Posttranslational Modifications in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, Classification, and Treatment. Cancers (Basel) 2022; 14:cancers14071610. [PMID: 35406382 PMCID: PMC8996999 DOI: 10.3390/cancers14071610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
There is evidence that posttranslational modifications, including phosphorylation, acetylation, methylation, ubiquitination, sumoylation, glycosylation, and succinylation, may be involved in thyroid cancer. We review recent reports supporting a role of posttranslational modifications in the tumorigenesis of thyroid cancer, sensitivity to radioiodine and other types of treatment, the identification of molecular treatment targets, and the development of molecular markers that may become useful as diagnostic tools. An increased understanding of posttranslational modifications may be an important supplement to the determination of alterations in gene expression that has gained increasing prominence in recent years.
Collapse
|
4
|
Bottrell A, Meng YH, Najy AJ, Hurst N, Kim S, Kim CJ, Kim ES, Moon A, Kim EJ, Park SY, Kim HRC. An oncogenic activity of PDGF-C and its splice variant in human breast cancer. Growth Factors 2019; 37:131-145. [PMID: 31542979 PMCID: PMC6872946 DOI: 10.1080/08977194.2019.1662415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite strong evidence for the involvement of PDGF signaling in breast cancer, little is known about the PDGF ligand responsible for PDGFR activation during breast cancer progression. Here, we found PDGF-C to be highly expressed in breast carcinoma cell lines. Immunohistochemical analysis of invasive breast cancer revealed an association between increased PDGF-C expression and lymph node metastases, Ki-67 proliferation index, and poor disease-free survival. We also identified a PDGF-C splice variant encoding truncated PDGF-C (t-PDGF-C) isoform lacking the signal peptide and the N-terminal CUB domain. While t-PDGF C homodimer is retained intracellularly, it can be secreted as a heterodimer with full-length PDGF-C (FL-PDGF-C). PDGF-C downregulation reduced anchorage-independent growth and matrigel invasion of MDA-MB-231 cells. Conversely, ectopic expression of t-PDGF-C enhanced phenotypic transformation and invasion in BT-549 cells expressing endogenous FL-PDGF-C. The present study provides new insights into the functional significance of PDGF-C and its splice variant in human breast cancer.
Collapse
Affiliation(s)
- Alyssa Bottrell
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Yong Hong Meng
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Abdo J. Najy
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Newton Hurst
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Seongho Kim
- Department of Oncology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Chong Jai Kim
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Eun Joo Kim
- Department of Pathology, Seoul National University Bundang Hospital, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Republic of Korea
- Co-corresponding authors: Hyeong-Reh C. Kim: Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Tel: 313-577-2407, Fax: 313-577-0057, , So Yeon Park: Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumiro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea. Tel: 82-31-787-7712, Fax: 82-31-787-4012,
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
- Co-corresponding authors: Hyeong-Reh C. Kim: Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Tel: 313-577-2407, Fax: 313-577-0057, , So Yeon Park: Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumiro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea. Tel: 82-31-787-7712, Fax: 82-31-787-4012,
| |
Collapse
|
5
|
Wang M, Jiang X. The significance of SUMOylation of angiogenic factors in cancer progression. Cancer Biol Ther 2018; 20:130-137. [PMID: 30261153 DOI: 10.1080/15384047.2018.1523854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is the process of endothelial cell migration and proliferation induced by angiogenic factors, which is essential for the development of tumors. In recent years, studies have reported that SUMOylation acts on tumor angiogenesis by targeting angiogenic factors as one of post-translational modifications of proteins. Anti-angiogenic therapy is a new treatment method for tumor treatment following radiotherapy and chemotherapy, and it inhibits tumor growth by blocking tumor blood vessels. Therefore, SUMOylation may become a potential target for anti-angiogenesis therapy. This article focuses on the effect of SUMOylation on vascular growth factors, important signaling pathways proteins, and the migration and function of endothelial cells, in order to provide a new research idea for the anti-angiogenic therapy of tumors.
Collapse
Affiliation(s)
- Mei Wang
- a Tumor laboratory, Department of Tumor Oncology , The Affiliated Lianyungang Hospital of Xuzhou Medical University , Lianyungang City , Jiangsu Province , China
| | - Xiaodong Jiang
- b Department of Tumor Oncology , The Affiliated Lianyungang Hospital of Xuzhou Medical University , Lianyungang City , Jiangsu Province , China
| |
Collapse
|
6
|
Hilton DA, Shivane A, Kirk L, Bassiri K, Enki DG, Hanemann CO. Activation of multiple growth factor signalling pathways is frequent in meningiomas. Neuropathology 2015; 36:250-61. [DOI: 10.1111/neup.12266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 01/14/2023]
Affiliation(s)
- David A Hilton
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Aditya Shivane
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Leanne Kirk
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Kayleigh Bassiri
- Institute of Translational and Stratified Medicine; Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| | - Doyo G Enki
- Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine; Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| |
Collapse
|
7
|
van Dijk F, Olinga P, Poelstra K, Beljaars L. Targeted Therapies in Liver Fibrosis: Combining the Best Parts of Platelet-Derived Growth Factor BB and Interferon Gamma. Front Med (Lausanne) 2015; 2:72. [PMID: 26501061 PMCID: PMC4594310 DOI: 10.3389/fmed.2015.00072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022] Open
Abstract
Cytokines, growth factors, and other locally produced mediators play key roles in the regulation of disease progression. During liver fibrosis, these mediators orchestrate the balance between pro- and antifibrotic activities as exerted by the hepatic cells. Two important players in this respect are the profibrotic mediator platelet-derived growth factor BB (PDGF-BB) and the antifibrotic cytokine interferon gamma (IFNγ). PDGF-BB, produced by many resident and infiltrating cells, causes extensive proliferation, migration, and contraction of hepatic stellate cells (HSCs) and myofibroblasts. These cells are the extracellular matrix-producing hepatic cells and they highly express the PDGFβ receptor. On the other hand, IFNγ is produced by natural killer cells in fibrotic livers and is endowed with proinflammatory, antiviral, and antifibrotic activities. This cytokine attracted much attention as a possible therapeutic compound in fibrosis. However, clinical trials yielded disappointing results because of low efficacy and adverse effects, most likely related to the dual role of IFNγ in fibrosis. In our studies, we targeted the antifibrotic IFNγ to the liver myofibroblasts. For that, we altered the cell binding properties of IFNγ, by delivery of the IFNγ-nuclear localization sequence to the highly expressed PDGFβ receptor using a PDGFβ receptor recognizing peptide, thereby creating a construct referred to as “Fibroferon” (i.e., fibroblast-targeted interferon γ). In recent years, we demonstrated that HSC-specific delivery of IFNγ increased its antifibrotic potency and improved its general safety profile in vivo, making Fibroferon highly suitable for the treatment of (fibrotic) diseases associated with elevated PDGFβ receptor expression. The present review summarizes the knowledge on these two key mediators, PDGF-BB and IFNγ, and outlines how we used this knowledge to create the cell-specific antifibrotic compound Fibroferon containing parts of both of these mediators.
Collapse
Affiliation(s)
- Fransien van Dijk
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands ; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| |
Collapse
|
8
|
Role of angiogenesis-related genes in cleft lip/palate: review of the literature. Int J Pediatr Otorhinolaryngol 2014; 78:1579-85. [PMID: 25176321 DOI: 10.1016/j.ijporl.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Cleft lip and cleft palate (CLP) are the most common congenital craniofacial anomalies. They have a multifactorial etiology and result from an incomplete fusion of the facial buds. Two main mechanisms, acting alone or interacting with each other, were evidenced in this fusion defect responsible for CLP: defective tissue development and/or defective apoptosis in normal or defective tissues. The objective of this work was to study the implication and role of angiogenesis-related genes in the etiology of CL/P. METHODS Our methodological approach included a systematic and thorough analysis of the genes involved in CL/P (syndromic and non-syndromic forms) including previously identified genes but also genes that could potentially be angiogenesis-related (OMIM, Pub Med).We studied the interactions of these different genes and their relationships with potential environmental factors. RESULTS TGFβ, FGA, PDGFc, PDGFRa, FGF, FGFR1, FGFR2 growth factors as well as MMP and TIMP2 proteolytic enzymes are involved in the genesis of CLP (P>L). Furthermore, 18 genes involved in CLP also interact with angiogenesis-related genes. DISCUSSION Even if the main angiogenesis-related genes involved in CLP formation are genes participating in several biological activities and their implication might not be always related to angiogenesis defects, they nevertheless remain an undeniably important research pathway. Furthermore, their interactions with environmental factors make them good candidates in the field of CLP prevention.
Collapse
|
9
|
Xiao ZH, Guo WH, Zhang JX. Role of small ubiquitin-related modifier-1 in the pathogenesis of hepatic fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2010; 18:1422-1427. [DOI: 10.11569/wcjd.v18.i14.1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the changes in the expression of small ubiquitin-related modifier-1 (SUMO-1) during the formation of hepatic fibrosis in rats and to investigate the role of SUMO-1 in the pathogenesis of hepatic fibrosis.
METHODS: Ninety male Sprague-Dawley rats were divided into two groups: model group and control group. The model group was subcutaneously injected with 40% carbon tetrachloride at a dose of 0.3 mL/100 g of body weight, while the control group was given equivalent volume of normal saline. Liver tissue samples were taken at weeks 2, 4, 6, 8, 10 and 12 after carbon tetrachloride injection. Hepatic fibrosis was pathologically evaluated. The expression of SUMO-1 mRNA and protein in liver tissue was detected by RT-PCR and Western blot, respectively.
RESULTS: During the formation of hepatic fibrosis, the expression of SUMO-1 mRNA was gradually up-regulated from week 2 to 12 (0.725 ± 0.017, 0.786 ± 0.018, 0.803 ± 0.023, 0.831 ± 0.020, 0.863 ± 0.016 and 0.892 ± 0.008, respectively; P < 0.01). Similarly, SUMO-1 protein expression was also gradually up-regulated from week 2 to 12 (0.810 ± 0.059, 0.873 ± 0.049, 0.923 ± 0.055, 0.959 ± 0.032, 0.988 ± 0.011 and 0.998 ± 0.004, respectively; P < 0.01).
CONCLUSION: The expression of both SUMO-1 mRNA and protein is gradually up-regulated during the formation of hepatic fibrosis, suggesting an important role of SUMO-1 in the pathogenesis of hepatic fibrosis.
Collapse
|
10
|
Bruland O, Fluge Ø, Akslen LA, Eiken HG, Lillehaug JR, Varhaug JE, Knappskog PM. Inverse correlation between PDGFC expression and lymphocyte infiltration in human papillary thyroid carcinomas. BMC Cancer 2009; 9:425. [PMID: 19968886 PMCID: PMC2797817 DOI: 10.1186/1471-2407-9-425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 12/08/2009] [Indexed: 11/10/2022] Open
Abstract
Background Members of the PDGF family have been suggested as potential biomarkers for papillary thyroid carcinomas (PTC). However, it is known that both expression and stimulatory effect of PDGF ligands can be affected by inflammatory cytokines. We have performed a microarray study in a collection of PTCs, of which about half the biopsies contained tumour-infiltrating lymphocytes or thyroiditis. To investigate the expression level of PDGF ligands and receptors in PTC we measured the relative mRNA expression of all members of the PDGF family by qRT-PCR in 10 classical PTC, eight clinically aggressive PTC, and five non-neoplastic thyroid specimens, and integrated qRT-PCR data with microarray data to enable us to link PDGF-associated gene expression profiles into networks based on recognized interactions. Finally, we investigated potential influence on PDGF mRNA levels by the presence of tumour-infiltrating lymphocytes. Methods qRT-PCR was performed on PDGFA, PDGFB, PDGFC, PDGFD, PDGFRA PDGFRB and a selection of lymphocyte specific mRNA transcripts. Semiquantitative assessment of tumour-infiltrating lymphocytes was performed on the adjacent part of the biopsy used for RNA extraction for all biopsies, while direct quantitation by qRT-PCR of lymphocyte-specific mRNA transcripts were performed on RNA also subjected to expression analysis. Relative expression values of PDGF family members were combined with a cDNA microarray dataset and analyzed based on clinical findings and PDGF expression patterns. Ingenuity Pathway Analysis (IPA) was used to elucidate potential molecular interactions and networks. Results PDGF family members were differentially regulated at the mRNA level in PTC as compared to normal thyroid specimens. Expression of PDGFA (p = 0.003), PDGFB (p = 0.01) and PDGFC (p = 0.006) were significantly up-regulated in PTCs compared to non-neoplastic thyroid tissue. In addition, expression of PDGFC was significantly up-regulated in classical PTCs as compared to clinically aggressive PTCs (p = 0.006), and PDGFRB were significantly up-regulated in clinically aggressive PTCs (p = 0.01) as compared to non-neoplastic tissue. Semiquantitative assessment of lymphocytes correlated well with quantitation of lymphocyte-specific gene expression. Further more, by combining TaqMan and microarray data we found a strong inverse correlation between PDGFC expression and the expression of lymphocyte specific mRNAs. Conclusion At the mRNA level, several members of the PDGF family are differentially expressed in PTCs as compared to normal thyroid tissue. Of these, only the PDGFC mRNA expression level initially seemed to distinguish classical PTCs from the more aggressive PTCs. However, further investigation showed that PDGFC expression level correlated inversely to the expression of several lymphocyte specific genes, and to the presence of lymphocytes in the biopsies. Thus, we find that PDGFC mRNA expression were down-regulated in biopsies containing infiltrated lymphocytes or thyroiditis. No other PDGF family member could be linked to lymphocyte specific gene expression in our collection of PTCs biopsies.
Collapse
Affiliation(s)
- Ove Bruland
- Center of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
11
|
Choi SJ, Marazita ML, Hart PS, Sulima PP, Field LL, McHenry TG, Govil M, Cooper ME, Letra A, Menezes R, Narayanan S, Mansilla MA, Granjeiro JM, Vieira AR, Lidral AC, Murray JC, Hart TC. The PDGF-C regulatory region SNP rs28999109 decreases promoter transcriptional activity and is associated with CL/P. Eur J Hum Genet 2008; 17:774-84. [PMID: 19092777 DOI: 10.1038/ejhg.2008.245] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human linkage and association studies suggest a gene(s) for nonsyndromic cleft lip with or without cleft palate (CL/P) on chromosome 4q31-q32 at or near the platelet-derived growth factor-C (PDGF-C) locus. The mouse Pdgfc(-/-) knockout shows that PDGF-C is essential for palatogenesis. To evaluate the role of PDGF-C in human clefting, we performed sequence analysis and SNP genotyping using 1048 multiplex CL/P families and 1000 case-control samples from multiple geographic origins. No coding region mutations were identified, but a novel -986 C>T SNP (rs28999109) was significantly associated with CL/P (P=0.01) in cases from Chinese families yielding evidence of linkage to 4q31-q32. Significant or near-significant association was also seen for this and several other PDGF-C SNPs in families from the United States, Spain, India, Turkey, China, and Colombia, whereas no association was seen in families from the Philippines, and Guatemala, and case-controls from Brazil. The -986T allele abolished six overlapping potential transcription regulatory motifs. Transfection assays of PDGF-C promoter reporter constructs show that the -986T allele is associated with a significant decrease (up to 80%) of PDGF-C gene promoter activity. This functional polymorphism acting on a susceptible genetic background may represent a component of human CL/P etiology.
Collapse
Affiliation(s)
- Sun J Choi
- Human Craniofacial Genetic Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892-1423, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|