1
|
Liu L, Huang Y, Zhang K, Song S, Li S, Li Y, Lan Y. Hepatitis B core antigen regulates dendritic cell proliferation and apoptosis through regulation of PKC/NF‑κB signaling pathway. Mol Med Rep 2018; 18:5726-5732. [PMID: 30365118 DOI: 10.3892/mmr.2018.9604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/19/2018] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B core antigen (HBcAg) possesses unusual immunologic features. However, the biological roles and mechanisms of HBcAg in dendritic cell proliferation and apoptosis remain to be elucidated. In the present study, DC2.4 cells were treated with different concentrations of HBcAg (10, 20 and 30 µg/ml). MTT assay and flow cytometry (Annexin V/propidium iodide analysis) were performed to investigate changes in cell proliferation and apoptosis. Western blot analysis was conducted to examine the changes in nuclear factor (NF)‑κB and protein kinase C (PKC) signaling pathways. NF‑κB inhibitor pyrrolidine dithiocarbamate (PDTC) and PKC inhibitor Chelerythrine were used to block these two signaling pathways. It was identified that HBcAg increased proliferation and decreased apoptosis in a dose‑dependent manner. Western blotting results demonstrated that HBcAg upregulated p‑PKC, p‑IκB, p‑P65, tumor necrosis factor‑α and B‑cell lymphoma 2 (Bcl‑2) levels, and downregulated cleaved caspase 3, demonstrating that HBcAg activated the PKC and NF‑κB signaling pathways. NF‑κB inhibitor PDTC reduced the effects of HBcAg on DC2.4 proliferation (0.6 fold vs. 0.25 fold) and apoptosis (0.43 fold vs. 0.17 fold), and on Bcl‑2 expression levels. PKC inhibitor Chelerythrine reduced the biological effects of HBcAg; it reduced proliferation (0.67 fold vs. 0.23 fold) and upregulated apoptosis (0.43 fold vs. 0.13 fold). Chelerythrine also blocked NF‑κB activity and the HBcAg‑induced Bcl‑2 increase, suggesting the effect on Bcl‑2 from HBcAg was dependent on the PKC/NF‑κB signaling pathway. In conclusion, HBcAg promoted proliferation and inhibited apoptosis through the PKC/NF‑κB/Bcl‑2 signaling pathway in DC2.4 cells.
Collapse
Affiliation(s)
- Lan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanxin Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kaili Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shupeng Song
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuangxing Li
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yongguo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yinghua Lan
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
2
|
Arsenic-induced apoptosis in the p53-proficient and p53-deficient cells through differential modulation of NFkB pathway. Food Chem Toxicol 2018; 118:849-860. [PMID: 29944914 DOI: 10.1016/j.fct.2018.06.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
Arsenic is a well-known environmental carcinogen and an effective chemotherapeutic agent. The underlying mechanism of this dual-effect, however, is not fully understood. In this study, we applied mouse p53+/+ and p53-/- cells to examine the NFκB pathway and proinflammatory cytokines after arsenic treatment. Arsenic reduced cell viability and increased more apoptosis in the p53-/- cells as compared to p53+/+ cells, which was correlated with activation of SAPK/JNK, p38 MAPK, and AKT pathways. A transcriptional regulatory network analysis revealed that arsenic activated transcription regulatory elements E2F, Egr1, Trp53, Stat6, Bcl6, Creb2 and ATF4 in the p53+/+ cells, while in the p53-/- cells, arsenic treatment altered transcription factors NFκB, Pparg, Creb2, ATF4, and Egr1. We observed dynamic changes in phosphorylated NFκB p65 (p-NFκB p65) and phosphorylated IKKαβ (p-IKKαβ) in both genotypes from 4 h to 24 h after treatment, significant decreases of p-NFκB p65 and p-IKKαβ in the p53-/- cells, whereas increases of p-NFκB p65 and p-IKKαβ were observed in the p53+/+ cells. Our study confirmed the differential modulation of NFκB pathway by arsenic in the p53+/+ or p53-/- cells and this observation of the differential mechanism of cell death between the p53+/+ and p53-/- cells might be linked to the unique ability of arsenic to act as both a carcinogen and a chemotherapeutic agent.
Collapse
|
3
|
Kumagai A, Kubo T, Kawata K, Kamekura R, Yamashita K, Jitsukawa S, Nagaya T, Sumikawa Y, Himi T, Yamashita T, Ichimiya S. Keratinocytes in atopic dermatitis express abundant ΔNp73 regulating thymic stromal lymphopoietin production via NF-κB. J Dermatol Sci 2017; 88:175-183. [DOI: 10.1016/j.jdermsci.2017.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/24/2017] [Accepted: 06/21/2017] [Indexed: 11/29/2022]
|
4
|
Pacini L, Savini C, Ghittoni R, Saidj D, Lamartine J, Hasan UA, Accardi R, Tommasino M. Downregulation of Toll-Like Receptor 9 Expression by Beta Human Papillomavirus 38 and Implications for Cell Cycle Control. J Virol 2015; 89:11396-405. [PMID: 26339055 PMCID: PMC4645680 DOI: 10.1128/jvi.02151-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Innate immunity is the first line of host defense against infections. Many oncogenic viruses can deregulate several immune-related pathways to guarantee the persistence of the infection. Here, we show that the cutaneous human papillomavirus 38 (HPV38) E6 and E7 oncoproteins suppress the expression of the double-stranded DNA sensor Toll-like receptor 9 (TLR9) in human foreskin keratinocytes (HFK), a key mediator of the antiviral innate immune host response. In particular, HPV38 E7 induces TLR9 mRNA downregulation by promoting accumulation of ΔNp73α, an antagonist of p53 and p73. Inhibition of ΔNp73α expression by antisense oligonucleotide in HPV38 E6/E7 HFK strongly rescues mRNA levels of TLR9, highlighting a key role of ΔNp73α in this event. Chromatin immunoprecipitation experiments showed that ΔNp73α is part of a negative transcriptional regulatory complex with IκB kinase beta (IKKβ) that binds to a NF-κB responsive element within the TLR9 promoter. In addition, the Polycomb protein enhancer of zeste homolog 2 (EZH2), responsible for gene expression silencing, is also recruited into the complex, leading to histone 3 trimethylation at lysine 27 (H3K27me3) in the same region of the TLR9 promoter. Ectopic expression of TLR9 in HPV38 E6/E7 cells resulted in an accumulation of the cell cycle inhibitors p21(WAF1) and p27(Kip1), decreased CDK2-associated kinase activity, and inhibition of cellular proliferation. In summary, our data show that HPV38, similarly to other viruses with well-known oncogenic activity, can downregulate TLR9 expression. In addition, they highlight a new role for TLR9 in cell cycle regulation. IMPORTANCE The mucosal high-risk HPV types have been clearly associated with human carcinogenesis. Emerging lines of evidence suggest the involvement of certain cutaneous HPV types in development of skin squamous cell carcinoma, although this association is still under debate. Oncogenic viruses have evolved different strategies to hijack the host immune system in order to guarantee the persistence of the infection. Their capability to evade the immune system is as important as their ability to promote cellular transformation. Therefore, understanding the viral mechanisms involved in viral persistence is a valid tool to evaluate their potential role in human carcinogenesis. Here, we show that E6 and E7 oncoproteins from the cutaneous HPV38 downregulate the expression of the double-stranded DNA sensor TLR9 of innate immunity. We also present evidence that the HPV38-mediated downregulation of TLR9 expression, in addition to its potential impact on the innate immune response, is linked to cell cycle deregulation.
Collapse
Affiliation(s)
- Laura Pacini
- International Agency for Research on Cancer, Lyon, France
| | - Claudia Savini
- International Agency for Research on Cancer, Lyon, France
| | | | - Djamel Saidj
- International Agency for Research on Cancer, Lyon, France
| | - Jerome Lamartine
- Centre de Génétique et de Physiologie Moléculaire et Cellulaires, CNRS UMR5534 et Université Claude Bernard Lyon 1, Lyon, France
| | - Uzma A Hasan
- Oncoviruses and Innate Immunity, INSERM U851, INSERM-I2V, UMS34444/US8, Université Lyon 1, Lyon, France
| | - Rosita Accardi
- International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
5
|
Sakaba Y, Awata H, Morisugi T, Kawakami T, Sakudo A, Tanaka Y. 15-Deoxy-Δ12,14-prostaglandin J2 induces PPARγ- and p53-independent apoptosis in rabbit synovial cells. Prostaglandins Other Lipid Mediat 2014; 109-111:1-13. [PMID: 24680891 DOI: 10.1016/j.prostaglandins.2014.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 02/10/2014] [Accepted: 02/21/2014] [Indexed: 01/15/2023]
Abstract
A ligand of peroxisome proliferator-activated receptor γ (PPARγ), 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) induces apoptosis in various cells. However, the mechanism appears to be complex and cell-type specific. We investigated the mechanism of 15d-PGJ2-induced apoptosis of rabbit synovial cells. Exposure to 15d-PGJ2 resulted in DNA fragmentation accompanied by caspase-3 and -9 activations in the cells, suggesting occurrence of mitochondria-mediated apoptosis. Although the exposure also induced remarkable increase in p53 protein, its transcriptional activity was rather reduced, suggesting non-necessity of p53 in 15d-PGJ2-induced apoptosis. Covalent binding of 15d-PGJ2 to cellular proteins including p53 resulted in their insolubilization. N-acetylcysteine inhibited not only the 15d-PGJ2-induced apoptotic events but also the protein insolubilizations via its interaction with 15d-PGJ2. The studies using a PPARγ-agonist and -antagonist showed noninvolvement of PPARγ in 15d-PGJ2-induced apoptosis. The pre-exposure to pro-inflammatory cytokines did not affect the cytotoxicity of 15d-PGJ2 in synovial cells. Taken together, these results show that 15d-PGJ2 induces a mitochondria-mediated apoptotic pathway in p53- and PPARγ-independent manners.
Collapse
Affiliation(s)
- Yukiko Sakaba
- Department of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of The Ryukyus, Uehara 207, Nishihara-Cho, Okinawa 903-0215, Japan
| | - Hisataka Awata
- Department of Clinical Physiology, School of Health Sciences, Faculty of Medicine, University of The Ryukyus, Uehara 207, Nishihara-Cho, Okinawa 903-0215, Japan
| | - Toshiaki Morisugi
- Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521, Japan
| | - Tetsuji Kawakami
- Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521, Japan
| | - Akikazu Sakudo
- Department of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of The Ryukyus, Uehara 207, Nishihara-Cho, Okinawa 903-0215, Japan
| | - Yasuharu Tanaka
- Department of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of The Ryukyus, Uehara 207, Nishihara-Cho, Okinawa 903-0215, Japan.
| |
Collapse
|
6
|
Nekulová M, Zitterbart K, Sterba J, Veselská R. Analysis of the intracellular localization of p73 N-terminal protein isoforms TAp73 and ∆Np73 in medulloblastoma cell lines. J Mol Histol 2010; 41:267-75. [PMID: 20803057 DOI: 10.1007/s10735-010-9288-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/18/2010] [Indexed: 12/13/2022]
Abstract
The protein homologous to the tumor suppressor p53, p73, has essential roles in development and tumorigenesis. This protein exists in a wide range of isoforms with different, even antagonistic, functions. However, there are virtually no detailed morphological studies analyzing the endogenous expression of p73 isoforms at the cellular level in cancer cells. In this study, we investigated the expression and subcellular distribution of two N-terminal isoforms, TAp73 and ΔNp73, in medulloblastoma cells using immunofluorescence microscopy. Both proteins were observed in all cell lines examined, but differences were noted in their intracellular localization between the reference Daoy cell line and four newly established medulloblastoma cell lines (MBL-03, MBL-06, MBL-07 and MBL-10). In the new cell lines, TAp73 and ΔNp73 were located predominantly in cell nuclei. However, there was heterogeneity in TAp73 distribution in the cells of all MBL cell lines, with the protein located in the nucleus and also in a limited non-random area in the cytoplasm. In a small percentage of cells, we detected cytoplasmic localization of TAp73 only, i.e., nuclear exclusion was observed. Our results provide a basis for future studies on the causes and function of distinct intracellular localization of p73 protein isoforms with respect to different protein-protein interactions in medulloblastoma cells.
Collapse
Affiliation(s)
- Marta Nekulová
- Department of Experimental Biology, School of Science, Masaryk University, Brno, Czech Republic
| | | | | | | |
Collapse
|
7
|
Puliyappadamba VT, Cheriyan VT, Thulasidasan AKT, Bava SV, Vinod BS, Prabhu PR, Varghese R, Bevin A, Venugopal S, Anto RJ. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Mol Cancer 2010; 9:220. [PMID: 20727180 PMCID: PMC2936340 DOI: 10.1186/1476-4598-9-220] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/20/2010] [Indexed: 12/23/2022] Open
Abstract
Background Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/-) and A549 (p53+/+) which indicates that the mode of up-regulation of survival signals by nicotine might be different in cells with and without p53. Results While low concentrations of nicotine induced activation of NF-κB, Akt, Bcl2, MAPKs, AP1 and IAPs in H1299, it failed to induce NF-κB in A549, and compared to H1299, almost 100 times higher concentration of nicotine was required to induce all other survival signals in A549. Transfection of WT-p53 and DN-p53 in H1299 and A549 respectively, reversed the mode of activation of survival signals. Curcumin down-regulated all the survival signals induced by nicotine in both the cells, irrespective of their p53 status. The hypothesis was confirmed when lower concentrations of nicotine induced NF-κB in two more lung cancer cells, Hop-92 and NCI-H522 with mutant p53 status. Silencing of p53 in A549 using siRNA made the cells susceptible to nicotine-induced NF-κB nuclear translocation as in A549 DN-p53 cells. Conclusions The present study reveals a detrimental role of nicotine especially in lung cancer patients with impaired p53 status and identifies curcumin as a potential chemopreventive.
Collapse
Affiliation(s)
- Vineshkumar T Puliyappadamba
- Integrated Cancer Research Program, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Morisugi T, Tanaka Y, Kawakami T, Kirita T. Mechanical stretch enhances NF-kappaB-dependent gene expression and poly(ADP-ribose) synthesis in synovial cells. J Biochem 2010; 147:633-44. [PMID: 20053785 DOI: 10.1093/jb/mvp210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Temporomandibular joint disorders (TMD) show complex symptoms associated with inflammation, pain and degeneration of the peripheral tissues including synovium. Although it is believed that excessive mechanical stress on synovium causes development of TMD, the molecular mechanism by which mechanical stress triggers TMD has still remained unclear. In order to examine the effect of mechanical stress on synoviocytes, rabbit synovial cells were cyclically stretched in vitro. The stretch efficiently increased the gene expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and NF-kappaB responsive reporter gene constructs. The interruption of NF-kappaB activating pathway by inhibitors resulted in the abrogation of those expressions, indicating the pivotal role of NF-kappaB in the mechanical stretch-mediated COX-2 and iNOS expressions. In parallel, the stretch remarkably increased NO production and poly(ADP-ribose) (PAR) synthesis, suggesting that excessive amounts of NO causes DNA injury and in turn activates PAR synthesis by poly(ADP-ribose) polymerase (PARP). The inhibition of PAR synthesis by a PARP inhibitor or a radical scavenger enhanced the mechanical stretch-induced gene expressions in a NF-kappaB-independent manner, implying an involvement of PARP in the gene expression. Taken together, these results demonstrate that mechanical stress on synovial cells not only induces gene expressions of COX-2 and iNOS but also affects PAR synthesis.
Collapse
Affiliation(s)
- Toshiaki Morisugi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Shijio-cho 840, Kashihara, Nara 634-8521, Japan.
| | | | | | | |
Collapse
|
9
|
Hironaka A, Morisugi T, Kawakami T, Miyagi I, Tanaka Y. 15-Deoxy-Delta(12,14)-prostaglandin J(2) impairs the functions of histone acetyltransferases through their insolubilization in cells. Biochem Biophys Res Commun 2009; 390:290-4. [PMID: 19799872 DOI: 10.1016/j.bbrc.2009.09.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
The cyclopentenonic prostaglandin 15-deoxy-Delta(12,14)-PG J(2) (15d-PGJ(2)) is a metabolite derived from PGD(2). Although 15d-PGJ(2) has been demonstrated to be a potent ligand for peroxisome proliferator activated receptor gamma (PPARgamma), the functions are not fully understood. In order to examine the effect of 15d-PGJ(2) on histone acetyltransferases (HATs), several lines of cell including mouse embryonic fibroblast (MEF) cells were exposed to 15d-PGJ(2). Three types of HAT, p300, CREB-binding protein (CBP), and p300/CBP-associated factor (PCAF), selectively disappeared from the soluble fraction in time- and dose-dependent manners. Inversely, HATs in the insoluble fraction increased, suggesting their conformational changes. The decrease in the soluble form of HATs resulted in the attenuation of NF-kappaB-, p53-, and heat shock factor-dependent reporter gene expressions, implying that the insoluble HATs are inactive. The resultant insoluble PCAF and p300 seemed to be digested by proteasome, because proteasome inhibitors caused the accumulation of insoluble HATs. Taken together, these results indicate that 15d-PGJ(2) attenuates some gene expressions that require HATs. This inhibitory action of 15d-PGJ(2) on the function of HATs was independent of PPARgamma, because PPARgamma agonists could not mimick 15d-PGJ(2) and PPARgamma antagonists did not inhibit 15d-PGJ(2).
Collapse
Affiliation(s)
- Asako Hironaka
- Department of Biochemistry, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521, Japan
| | | | | | | | | |
Collapse
|
10
|
Marqués-García F, Ferrandiz N, Fernández-Alonso R, González-Cano L, Herreros-Villanueva M, Rosa-Garrido M, Fernández-García B, Vaque JP, Marqués MM, Alonso ME, Segovia JC, León J, Marín MC. p73 plays a role in erythroid differentiation through GATA1 induction. J Biol Chem 2009; 284:21139-56. [PMID: 19509292 DOI: 10.1074/jbc.m109.026849] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TP73 gene gives rise to transactivation domain-p73 isoforms (TAp73) as well as DeltaNp73 variants with a truncated N terminus. Although TAp73alpha and -beta proteins are capable of inducing cell cycle arrest, apoptosis, and differentiation, DeltaNp73 acts in many cell types as a dominant-negative repressor of p53 and TAp73. It has been proposed that p73 is involved in myeloid differentiation, and its altered expression is involved in leukemic degeneration. However, there is little evidence as to which p73 variants (TA or DeltaN) are expressed during differentiation and whether specific p73 isoforms have the capacity to induce, or hinder, this differentiation in leukemia cells. In this study we identify GATA1 as a direct transcriptional target of TAp73alpha. Furthermore, TAp73alpha induces GATA1 activity, and it is required for erythroid differentiation. Additionally, we describe a functional cooperation between TAp73 and DeltaNp73 in the context of erythroid differentiation in human myeloid cells, K562 and UT-7. Moreover, the impaired expression of GATA1 and other erythroid genes in the liver of p73KO embryos, together with the moderated anemia observed in p73KO young mice, suggests a physiological role for TP73 in erythropoiesis.
Collapse
|
11
|
Marrazzo E, Marchini S, Tavecchio M, Alberio T, Previdi S, Erba E, Rotter V, Broggini M. The expression of the DeltaNp73beta isoform of p73 leads to tetraploidy. Eur J Cancer 2008; 45:443-53. [PMID: 19008096 DOI: 10.1016/j.ejca.2008.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/01/2008] [Accepted: 09/23/2008] [Indexed: 01/12/2023]
Abstract
The p73 locus gene has a complex structure encoding a plethora of isoforms. The different DeltaN truncated isoforms of p73 may exert different activities depending on the cellular context. The beta isoform of DeltaNp73 seems to have a particular pattern of action even if its role in cell cycle and mitosis is still under investigation. To gain further knowledge of DeltaNp73beta's function, we investigated the effects of its over-expression in tumour cellular models, using the tetracycline-inducible expression system. In the human lung carcinoma cell line H1299, DeltaNp73beta over-expression resulted in suppression of cell growth and in cell death. Surprisingly stable over-expression of DeltaNp73beta impaired the genomic stability of tumour cells, leading to the formation of tetraploid cells. The cells become enlarged and multinucleate, with incorrect mitotic figures, and died by apoptotic-independent pathways. Our data suggest that DeltaNp73beta-induced aberrant mitosis evades the control of the mitotic spindle assay checkpoint, leading to tetraploidy and cell death through mitotic catastrophe rather than apoptosis. The various C-terminal regions of DeltaNp73 may influence the final cellular phenotype and we assume that the beta one in particular could be important in both cell growth control and regulation of mitosis.
Collapse
Affiliation(s)
- E Marrazzo
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Danilova N, Sakamoto KM, Lin S. p53 family in development. Mech Dev 2008; 125:919-31. [PMID: 18835440 DOI: 10.1016/j.mod.2008.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 09/04/2008] [Accepted: 09/12/2008] [Indexed: 12/17/2022]
Abstract
The p53 family network is a unique cellular processor that integrates information from various pathways and determines cellular choices between proliferation, replication arrest/repair, differentiation, senescence, or apoptosis. The most studied role of the p53 family is the regulation of stress response and tumor suppression. By removing damaged cells from the proliferating pool, p53 family members preserve the integrity of the genome. In addition to this well recognized role, recent data implicate the p53 protein family in a broader role of controlling cell proliferation, differentiation and death. Members of the p53 protein family with opposing activity perform coordination of these processes. Imbalance of p53 protein family may contribute to a significant proportion of congenital developmental abnormalities in humans.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, 615 Charles E. Young Drive South, BSRB 454, Los Angeles, CA 90095-1606, USA.
| | | | | |
Collapse
|
13
|
Buhlmann S, Pützer BM. DNp73 a matter of cancer: mechanisms and clinical implications. Biochim Biophys Acta Rev Cancer 2008; 1785:207-16. [PMID: 18302944 DOI: 10.1016/j.bbcan.2008.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 01/26/2008] [Accepted: 01/28/2008] [Indexed: 12/14/2022]
Abstract
The p53 family proteins carry on a wide spectrum of biological functions from differentiation, cell cycle arrest, apoptosis, and chemosensitivity of tumors. NH2-terminally truncated p73 (referred to as DNp73) acts as a potent inhibitor of all these tumor suppressor properties, implying that it has oncogenic functions in human tumorigenesis. This was favored by the observation that high DNp73 expression levels in a variety of cancers are associated with adverse clinico-pathological characteristics and the response failure to chemotherapy. The actual challenge is the deciphering of the molecular mechanisms by which DNp73 promotes malignancy and to unravel the regulatory pathways for controlling TP73 isoform expression. This review is focused on recent findings leaving no doubt that N-terminally truncated p73 proteins are operative during oncogenesis, thus underscoring its significance as a marker for disease severity in patients and as target for cancer therapy.
Collapse
Affiliation(s)
- Sven Buhlmann
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Schillingallee 69, 18055 Rostock, Germany
| | | |
Collapse
|