1
|
Schor AM, Woolston AM, Kankova K, Harada K, Aljorani LE, Perrier S, Felts PA, Keatch RP, Schor SL. Migration Stimulating Factor (MSF): Its Role in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:351-397. [PMID: 34664248 DOI: 10.1007/978-3-030-73119-9_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Migration Stimulating Factor (MSF) is a 70 kDa truncated isoform of fibronectin (FN); its mRNA is generated from the FN gene by an unusual two-stage processing. Unlike full-length FN, MSF is not a matrix molecule but a soluble protein which displays cytokine-like activities not displayed by any other FN isoform due to steric hindrance. There are two isoforms of MSF; these are referred to as MSF+aa and MSF-aa, while the term MSF is used to include both.MSF was first identified as a motogen secreted by foetal and cancer-associated fibroblasts in tissue culture. It is also produced by sprouting (angiogenic) endothelial cells, tumour cells and activated macrophages. Keratinocytes and resting endothelial cells secrete inhibitors of MSF that have been identified as NGAL and IGFBP-7, respectively. MSF+aa and MSF-aa show distinct functionality in that only MSF+aa is inhibited by NGAL.MSF is present in 70-80% of all tumours examined, expressed by the tumour cells as well as by fibroblasts, endothelial cells and macrophages in the tumour microenvironment (TME). High MSF expression is associated with tumour progression and poor prognosis in all tumours examined, including breast carcinomas, non-small cell lung cancer (NSCLC), salivary gland tumours (SGT) and oral squamous cell carcinomas (OSCC). Epithelial and stromal MSF carry independent prognostic value. MSF is also expressed systemically in cancer patients, being detected in serum and produced by fibroblast from distal uninvolved skin. MSF-aa is the main isoform associated with cancer, whereas MSF+aa may be expressed by both normal and malignant tissues.The expression of MSF is not invariant; it may be switched on and off in a reversible manner, which requires precise interactions between soluble factors present in the TME and the extracellular matrix in contact with the cells. MSF expression in fibroblasts may be switched on by a transient exposure to several molecules, including TGFβ1 and MSF itself, indicating an auto-inductive capacity.Acting by both paracrine and autocrine mechanisms, MSF stimulates cell migration/invasion, induces angiogenesis and cell differentiation and alters the matrix and cellular composition of the TME. MSF is also a survival factor for sprouting endothelial cells. IGD tri- and tetra-peptides mimic the motogenic and angiogenic activities of MSF, with both molecules inhibiting AKT activity and requiring αvβ3 functionality. MSF is active at unprecedently low concentrations in a manner which is target cell specific. Thus, different bioactive motifs and extracellular matrix requirements apply to fibroblasts, endothelial cells and tumour cells. Unlike other motogenic and angiogenic factors, MSF does not affect cell proliferation but it stimulates tumour growth through its angiogenic effect and downstream mechanisms.The epithelial-stromal pattern of expression and range of bioactivities displayed puts MSF in the unique position of potentially promoting tumour progression from both the "seed" and the "soil" perspectives.
Collapse
Affiliation(s)
- A M Schor
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - A M Woolston
- School of Dentistry, University of Dundee, Dundee, UK
| | - K Kankova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - K Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - L E Aljorani
- School of Dentistry, University of Dundee, Dundee, UK
| | - S Perrier
- School of Dentistry, University of Dundee, Dundee, UK
| | - P A Felts
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - R P Keatch
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - S L Schor
- School of Science and Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Rajagopalan P, Nanjappa V, Raja R, Jain AP, Mangalaparthi KK, Sathe GJ, Babu N, Patel K, Cavusoglu N, Soeur J, Pandey A, Roy N, Breton L, Chatterjee A, Misra N, Gowda H. How Does Chronic Cigarette Smoke Exposure Affect Human Skin? A Global Proteomics Study in Primary Human Keratinocytes. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:615-626. [PMID: 27828771 DOI: 10.1089/omi.2016.0123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cigarette smoking has been associated with multiple negative effects on human skin. Long-term physiological effects of cigarette smoke are through chronic and not acute exposure. Molecular alterations due to chronic exposure to cigarette smoke remain unclear. Primary human skin keratinocytes chronically exposed to cigarette smoke condensate (CSC) showed a decreased wound-healing capacity with an increased expression of NRF2 and MMP9. Using quantitative proteomics, we identified 4728 proteins, of which 105 proteins were overexpressed (≥2-fold) and 41 proteins were downregulated (≤2-fold) in primary skin keratinocytes chronically exposed to CSC. We observed an alteration in the expression of several proteins involved in maintenance of epithelial barrier integrity, including keratin 80 (5.3 fold, p value 2.5 × 10-7), cystatin A (3.6-fold, p value 3.2 × 10-3), and periplakin (2.4-fold, p value 1.2 × 10-8). Increased expression of proteins associated with skin hydration, including caspase 14 (2.2-fold, p value 4.7 × 10-2) and filaggrin (3.6-fold, p value 5.4 × 10-7), was also observed. In addition, we report differential expression of several proteins, including adipogenesis regulatory factor (2.5-fold, p value 1.3 × 10-3) and histone H1.0 (2.5-fold, p value 6.3 × 10-3) that have not been reported earlier. Bioinformatics analyses demonstrated that proteins differentially expressed in response to CSC are largely related to oxidative stress, maintenance of skin integrity, and anti-inflammatory responses. Importantly, treatment with vitamin E, a widely used antioxidant, could partially rescue adverse effects of CSC exposure in primary skin keratinocytes. The utility of antioxidant-based new dermatological formulations in delaying or preventing skin aging and oxidative damages caused by chronic cigarette smoke exposure warrants further clinical investigations and multi-omics research.
Collapse
Affiliation(s)
- Pavithra Rajagopalan
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 2 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Vishalakshi Nanjappa
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Remya Raja
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | - Ankit P Jain
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 2 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Kiran K Mangalaparthi
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Gajanan J Sathe
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 4 Manipal University , Manipal, India
| | - Niraj Babu
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | - Krishna Patel
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Jeremie Soeur
- 5 L'Oréal Research and Innovation , Aulnay Sous Bois, France
| | - Akhilesh Pandey
- 6 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 7 Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 8 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 9 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Nita Roy
- 10 L'Oréal India, Bangalore, India
| | - Lionel Breton
- 5 L'Oréal Research and Innovation , Aulnay Sous Bois, France
| | - Aditi Chatterjee
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | | | - Harsha Gowda
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| |
Collapse
|
3
|
Clinical implications of aldo-keto reductase family 1 member C3 and its relationship with lipocalin 2 in cancer of the uterine cervix. Gynecol Oncol 2013; 132:474-82. [PMID: 24316309 DOI: 10.1016/j.ygyno.2013.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Over-expression of the aldo-keto reductase family 1 member C3 (AKR1C3) has been demonstrated in many human cancers. Lipocalin 2 (LCN2) is reported to inhibit cervical cancer metastasis but little is known regarding its relationship with AKR1C3 in the development and progression of uterine cervical cancer. This study aimed to investigate the involvement of AKR1C3 and its relationship with LCN2 in cervical cancer. METHODS The roles of AKR1C3 and LCN2 were investigated using the lentivirus shRNA system in SiHa and Caski cervical cancer cells. LCN2 and matrix metalloproteinase-2 (MMP-2) promoters were constructed to demonstrate transcriptional regulation by shAKR1C3 and shLCN2, respectively. The influences of metastatic phenotypes were analyzed by wound healing, Boyden chamber, and immunofluorescence assays. The activity of MMP-2 was determined by zymography assay. The impacts of AKR1C3 and LCN2 on patient prognosis were evaluated using tissue microarrays by Cox regression and Kaplan-Meier models. RESULTS Silencing of the AKR1C3 gene increased the expression of LCN2 and decreased the migratory and invasive abilities and changed the cytoskeleton of cervical cancer cells. When AKR1C3 was over-expressed, it decreased LCN2 promoter activity and LCN2 expression and increased cell migration. The mRNA level and enzyme activity of MMP-2 increased in silenced LCN2 cells. Positive AKR1C3 and negative LCN2 were correlated with higher recurrence and poorer survival of cervical cancer patients. CONCLUSIONS Silencing of AKR1C3 increases LCN2 expression and inhibits metastasis in cervical cancer. Both AKR1C3 and LCN2 serve as molecular targets for cancer therapy to improve the clinical outcome of cervical cancer patients.
Collapse
|
4
|
Galloway JL, Jones SJ, Mossey PA, Ellis IR. The control and importance of hyaluronan synthase expression in palatogenesis. Front Physiol 2013; 4:10. [PMID: 23382716 PMCID: PMC3563114 DOI: 10.3389/fphys.2013.00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/09/2013] [Indexed: 11/22/2022] Open
Abstract
Development of the lip and palate involves a complex series of events that requires the close co-ordination of cell migration, growth, differentiation, and apoptosis. Palatal shelf elevation is considered to be driven by regional accumulation and hydration of glycosoaminoglycans, principally hyaluronan (HA), which provides an intrinsic shelf force, directed by components of the extracellular matrix (ECM). During embryogenesis, the extracellular and pericellular matrix surrounding migrating and proliferating cells is rich in HA. This would suggest that HA may be important in both shelf growth and fusion. TGFβ3 plays an important role in palatogenesis and the corresponding homozygous null (TGFβ3−/−) mouse, exhibits a defect in the fusion of the palatal shelves resulting in clefting of the secondary palate. TGFβ3 is expressed at the future medial edge epithelium (MEE) and at the actual edge epithelium during E14.5, suggesting a role for TGFβ3 in fusion. This is substantiated by experiments showing that addition of exogenous TGFβ3 can “rescue” the cleft palate phenotype in the null mouse. In addition, TGFβ1 and TGFβ2 can rescue the null mouse palate (in vitro) to near normal fusion. In vivo a TGFβ1 knock-in mouse, where the coding region of the TGFβ3 gene was replaced with the full-length TGFβ1 cDNA, displayed complete fusion at the mid portion of the secondary palate, whereas the anterior and posterior regions failed to fuse appropriately. We present experimental data indicating that the three HA synthase (Has) enzymes are differentially expressed during palatogenesis. Using immunohistochemistry (IHC) and embryo sections from the TGFβ3 null mouse at days E13.5 and E14.5, it was established that there was a decrease in expression of Has2 in the mesenchyme and an increase in expression of Has3 in comparison to the wild-type mouse. In vitro data indicate that HA synthesis is affected by addition of exogenous TGFβ3. Preliminary data suggests that this increase in HA synthesis, in response to TGFβ3, is under the control of the PI3kinase/Akt pathway.
Collapse
Affiliation(s)
- Jennifer L Galloway
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee Dundee, UK
| | | | | | | |
Collapse
|
9
|
Schor AM, Ellis IR, Jones SJ, Perrier S, Florence MM, Cox J, Ohe G, Kankova K, Vojtesek B, Thompson AM, Purdie C, Kazmi S, Foo S, Woolston AM, Schor SL. Identification and role of migration stimulating factor isoforms in breast carcinomas. Breast Cancer Res 2008. [PMCID: PMC3300769 DOI: 10.1186/bcr1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|