1
|
Mahdei Nasir Mahalleh N, Hemmati M, Biyabani A, Pirouz F. The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. DNA Cell Biol 2025; 44:55-81. [PMID: 39653363 DOI: 10.1089/dna.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.
Collapse
Affiliation(s)
- Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Pirouz
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Rahman MA, Islam MM, Ripon MAR, Islam MM, Hossain MS. Regulatory Roles of MicroRNAs in the Pathogenesis of Metabolic Syndrome. Mol Biotechnol 2024; 66:1599-1620. [PMID: 37393414 DOI: 10.1007/s12033-023-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Metabolic syndrome refers to a group of several disease conditions together with high glucose triglyceride levels, high blood pressure, lower high-density lipoprotein level, and large waist circumference. About 400 million people worldwide, one-third of the Euro-American population and 27% Chinese population over age 50 have it. microRNAs, an abundant novel class of endogenous small, non-coding RNAs in eukaryotic cells, act as negative controllers of gene expression by promoting either degradation/translational repression of target messenger RNA. More than 2000 microRNAs in the human genome have been identified and they are implicated in various biological & pathophysiological processes, including glucose homeostasis, inflammatory response, and angiogenesis. Destruction of microRNAs has a crucial role in the pathogenesis of obesity, cardiovascular disease, and diabetes. Recently the discovery of circulating microRNAs in human serum may help to promote metabolic crosstalk between organs and serves as a novel approach for the identification of various diseases, like Type 2 diabetes & atherosclerosis. In this review, we will discuss the most recent and up-to-date research on the pathophysiology and histopathology of metabolic syndrome besides their historical background and epidemiological highlight. As well as search the methodologies employed in this field of research and the potential role of microRNAs as novel biomarkers and therapeutic targets for metabolic syndrome in the human body. Furthermore, the significance of microRNAs in promising strategies, like stem cell therapy, which holds enormous promise for regenerative medicine in the treatment of metabolic disorders will also be discussed.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
- Bangladesh Obesity Research Network (BORN), Noakhali, 3814, Bangladesh.
| |
Collapse
|
3
|
Giammona A, Di Franco S, Lo Dico A, Stassi G. The miRNA Contribution in Adipocyte Maturation. Noncoding RNA 2024; 10:35. [PMID: 38921832 PMCID: PMC11206860 DOI: 10.3390/ncrna10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Mesenchymal stem cells, due to their multipotent ability, are considered one of the best candidates to be used in regenerative medicine. To date, the most used source is represented by the bone marrow, despite the limited number of cells and the painful/invasive procedure for collection. Therefore, the scientific community has investigated many alternative sources for the collection of mesenchymal stem cells, with the adipose tissue representing the best option, given the abundance of mesenchymal stem cells and the easy access. Although adipose mesenchymal stem cells have recently been investigated for their multipotency, the molecular mechanisms underlying their adipogenic potential are still unclear. In this scenario, this communication is aimed at defining the role of miRNAs in adipogenic potential of adipose-derived mesenchymal stem cells via real-time PCR. Even if preliminary, our data show that cell culture conditions affect the expression of specific miRNA involved in the adipogenic potential of mesenchymal stem cells. The in vitro/in vivo validation of these results could pave the way for novel therapeutic strategies in the field of regenerative medicine. In conclusion, our research highlights how specific cell culture conditions can modulate the adipogenic potential of adipose mesenchymal stem cells through the regulation of specific miRNAs.
Collapse
Affiliation(s)
- Alessandro Giammona
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Segrate, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Simone Di Franco
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Segrate, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Giorgio Stassi
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
4
|
Gouda W, Ahmed AE, Mageed L, Hassan AK, Afify M, Hamimy WI, Ragab HM, Maksoud NAE, Allayeh AK, Abdelmaksoud MDE. Significant role of some miRNAs as biomarkers for the degree of obesity. J Genet Eng Biotechnol 2023; 21:109. [PMID: 37930593 PMCID: PMC10628096 DOI: 10.1186/s43141-023-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Obesity is one of the most serious problems over the world. MicroRNAs have developed as main mediators of metabolic processes, playing significant roles in physiological processes. Thus, the present study aimed to evaluate the expressions of (miR-15a, miR-Let7, miR-344, and miR-365) and its relationship with the different classes in obese patients. METHODS A total of 125 individuals were enrolled in the study and classified into four groups: healthy non-obese controls (n = 50), obese class I (n = 24), obese class II (n = 17), and obese class III (n = 34) concerning body mass index (BMI < 30 kg/m2, BMI 30-34.9 kg/m2, BMI 35-39.9 kg/m2 and BMI ≥ 40 kg/m2, respectively). BMI and the biochemical measurements (fasting glucose, total cholesterol, triglycerides, HDL and LDL, urea, creatinine, AST, and ALT) were determined. The expressions of (miR-15a, miR-Let7, miR-344, and miR-365) were detected through quantitative real-time PCR (RT-qPCR). RESULTS There was a significant difference between different obese classes and controls (P < 0.05) concerning (BMI, TC, TG, HDL, and LDL). In contrast, fasting glucose, kidney, and liver functions had no significant difference. Our data revealed that the expression of miR-15a and miR-365 were significantly associated with different obese classes. But the circulating miR-Let7 and miR-344 were not significantly related to obesity in different classes. CONCLUSION Our study indicated that miR-15a and miR-365 might consider as biomarkers for the obesity development into different obese classes. Thus, the relationship between regulatory microRNAs and disease has been the object of intense investigation.
Collapse
Affiliation(s)
- Weaam Gouda
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt.
| | - Amr E Ahmed
- Department of Biotechnology and Life Science, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Lamiaa Mageed
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Amgad K Hassan
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Mie Afify
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - W I Hamimy
- Anesthesia Department, Obesity, Surgery Unit, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Halla M Ragab
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Nabila Abd El Maksoud
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Abdou K Allayeh
- Environment and Climate Change Institute, National Research Centre, Giza, Egypt
| | - Mohamed D E Abdelmaksoud
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
5
|
Miao X, Liu L, Liu L, Hu G, Wu G, Wang Y, Zhao Y, Yang J, Li X. Regulation of mRNA and miRNA in the response to Salmonella enterica serovar Enteritidis infection in chicken cecum. BMC Vet Res 2022; 18:437. [PMID: 36514049 PMCID: PMC9749161 DOI: 10.1186/s12917-022-03522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica, serovar Enteritidis (SE) is a food-borne pathogen, which can cause great threat to human health through consumption of the contaminated poultry products. Chicken is the main host of SE. The mRNA and microRNA (miRNA) expression profiles were analyzed on cecum of Shouguang chicken via next-generation sequencing and bioinformatics approaches. The treated group was inoculated SE, and the control group was inoculated with phosphate buffer saline (PBS). RESULTS There were 1760 differentially expressed mRNAs in the SE-infected group, of which 1046 were up-regulated mRNA, and 714 were down-regulated mRNA. In addition, a total of 821 miRNAs were identified, and 174 miRNAs were differentially expressed, of which 100 were up-regulated and 74 were down-regulated. Functional enrichment of differentially expressed mRNAs was similar to miRNA target genes. The functional analysis results of differentially expressed mRNAs and miRNAs were performed. Immune-related processes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were enriched by up-regulated mRNA. The down-regulated mRNAs were enriched in tissue development and metabolic-related KEGG pathways. The functional analysis of up-regulated miRNA target genes was similar to the down-regulated mRNAs. The down-regulated miRNA target genes were enriched in metabolic-related GO (Gene Ontology) -BP (Biological process) terms and KEGG pathways. The overlap of the up-regulated mRNA and the up-regulated miRNA target genes (class I) was 325, and the overlap of the down-regulated miRNA target genes (class II) was 169. The class I enriched in the immune-related GO-BP terms and KEGG pathways. The class II mainly enriched in metabolic-related GO-BP terms and KEGG pathways. Then we detected the expression of mRNA and miRNA through qRT-PCR. The results shown that the expression of HHIP, PGM1, HTR2B, ITGB5, RELN, SFRP1, TCF7L2, SCNN1A, NEK7, miR-20b-5p, miR-1662, miR-15a, miR-16-1-3p was significantly different between two groups. Dual-luciferase reporter assay was used to detect the relationship between miR-20b-5p and SCNN1A. The result indicated that miR-20b-5p regulate immune or metabolic responses after SE infection in Shouguang chickens by directly targeting SCNN1A. CONCLUSIONS The findings here contribute to the further analysis of the mechanism of mRNA and miRNA defense against SE infection, and provide a theoretical foundation for the molecular disease-resistant breeding of chickens.
Collapse
Affiliation(s)
- Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Lewen Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Guixian Wu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan, 250010, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
6
|
Abstract
DLK1 is a maternally imprinted, paternally expressed gene coding for the transmembrane protein Delta-like homologue 1 (DLK1), a non-canonical NOTCH ligand with well-described roles during development, and tumor-supportive functions in several aggressive cancer forms. Here, we review the many functions of DLK1 as a regulator of stem cell pools and tissue differentiation in tissues such as brain, muscle, and liver. Furthermore, we review recent evidence supporting roles for DLK1 in the maintenance of aggressive stem cell characteristics of tumor cells, specifically focusing on central nervous system tumors, neuroblastoma, and hepatocellular carcinoma. We discuss NOTCH -dependent as well as NOTCH-independent functions of DLK1, and focus particularly on the complex pattern of DLK1 expression and cleavage that is finely regulated from a spatial and temporal perspective. Progress in recent years suggest differential functions of extracellular, soluble DLK1 as a paracrine stem cell niche-secreted factor, and has revealed a role for the intracellular domain of DLK1 in cell signaling and tumor stemness. A better understanding of DLK1 regulation and signaling may enable therapeutic targeting of cancer stemness by interfering with DLK1 release and/or intracellular signaling.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Sánchez-Ceinos J, Rangel-Zuñiga OA, Clemente-Postigo M, Podadera-Herreros A, Camargo A, Alcalá-Diaz JF, Guzmán-Ruiz R, López-Miranda J, Malagón MM. miR-223-3p as a potential biomarker and player for adipose tissue dysfunction preceding type 2 diabetes onset. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1035-1052. [PMID: 33614249 PMCID: PMC7868931 DOI: 10.1016/j.omtn.2021.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
Circulating microRNAs (miRNAs) have been proposed as biomarkers for type 2 diabetes (T2D). Adipose tissue (AT), for which dysfunction is widely associated with T2D development, has been reported as a major source of circulating miRNAs. However, the role of dysfunctional AT in the altered pattern of circulating miRNAs associated with T2D onset remains unexplored. Herein, we investigated the relationship between T2D-associated circulating miRNAs and AT function, as well as the role of preadipocytes and adipocytes as secreting cells of candidate circulating miRNAs. Among the plasma miRNAs related to T2D onset in the CORonary Diet Intervention with Olive oil and cardiovascular PREVention (CORDIOPREV) cohort, baseline miR-223-3p levels (diminished in patients who next developed T2D [incident-T2D]) were significantly related to AT insulin resistance (IR). Baseline serum from incident-T2D participants induced inflammation and IR in 3T3-L1 adipocytes. We demonstrated that tumor necrosis factor (TNF)-α inhibited miR-223-3p secretion while enhancing miR-223-3p intracellular accumulation in 3T3-L1 (pre)adipocytes. Overexpression studies showed that an intracellular increase of miR-223-3p impaired glucose and lipid metabolism in these cells. Our findings provide mechanistic insights into the alteration of circulating miRNAs preceding T2D, unveiling both preadipocytes and adipocytes as miR-223-3p-secreting cells and suggesting that inflammation promotes miR-223-3p intracellular accumulation, which might contribute to (pre)adipocyte dysfunction and body metabolic dysregulation.
Collapse
Affiliation(s)
- Julia Sánchez-Ceinos
- Department of Cell Biology, Physiology, and Immunology; Maimónides Biomedical Research Institute of Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital; Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Oriol A Rangel-Zuñiga
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Lipids and Atherosclerosis Unit; Department of Internal Medicine, IMIBIC/Reina Sofia University Hospital/University of Córdoba; Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Mercedes Clemente-Postigo
- Department of Cell Biology, Physiology, and Immunology; Maimónides Biomedical Research Institute of Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital; Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Alicia Podadera-Herreros
- Department of Cell Biology, Physiology, and Immunology; Maimónides Biomedical Research Institute of Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital; Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Antonio Camargo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Lipids and Atherosclerosis Unit; Department of Internal Medicine, IMIBIC/Reina Sofia University Hospital/University of Córdoba; Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Juan Francisco Alcalá-Diaz
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Lipids and Atherosclerosis Unit; Department of Internal Medicine, IMIBIC/Reina Sofia University Hospital/University of Córdoba; Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology; Maimónides Biomedical Research Institute of Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital; Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.,Lipids and Atherosclerosis Unit; Department of Internal Medicine, IMIBIC/Reina Sofia University Hospital/University of Córdoba; Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology; Maimónides Biomedical Research Institute of Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital; Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
8
|
Zhang Y, Otomaru K, Oshima K, Goto Y, Oshima I, Muroya S, Sano M, Roh S, Gotoh T. Maternal Nutrition During Gestation Alters Histochemical Properties, and mRNA and microRNA Expression in Adipose Tissue of Wagyu Fetuses. Front Endocrinol (Lausanne) 2021; 12:797680. [PMID: 35178028 PMCID: PMC8844027 DOI: 10.3389/fendo.2021.797680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
We hypothesized that maternal low or high nutrition would give unique effects to morphological and molecular dynamics in adipose tissue of fetus of fatty breed Wagyu (Japanese Black) cattle which produce highly marbled beef. This study aimed to determine the effects of maternal energy intake in Wagyu cows, during gestation on fetal adipose tissue development, histochemical properties, and gene and microRNA (miRNA) expression. Cows were allocated to one of two nutritional energy groups: 120% (HIGH) or 60% nutritional requirements of (LOW). Fetuses (n = 6 per treatment) were removed from pregnant cows by cesarean section at fetal age 260 ± 8 days and euthanized. Subcutaneous adipose tissue (SAT), thoracic cavity visceral adipose tissue (TVAT), and perirenal adipose tissue (PAT) were collected for analysis. In histochemical analysis, in SAT and PAT, HIGH fetuses had greater diameter of adipocytes than LOW fetuses (P<0.05). Only in SAT, LOW fetuses had more Leptin (LEP) mRNA and tended to have more Peroxisome Proliferator-Activated Receptor gamma (PPARG) CCAAT-enhancer-binding proteins alpha (CEBPA) and Glucose transporter (GLUT) 4 mRNA(P<0.10). In all SAT, TVAT, and PAT, LOW fetuses had higher levels of the brown adipose tissue (BAT) biomarkers Uncoupling Protein (UCP) 1 and PPARG coactivator (PGC) 1α mRNA than HIGH fetuses (P<0.08). Meanwhile, in the other adipose tissue, LOW fetuses had lower PPARG, CEBPA, and Zinc Finger Protein (ZFP) 423 (in TVAT and PAT), FASN (in TVAT), LEP and GLUT4 mRNA (in PAT; P<0.10). In particular, in TVAT and PAT, LOW fetuses exhibited lower expression of WAT biomarkers (PPARG and ZFP423). Differential expression of various miRNAs related to adipogenesis between the LOW and HIGH fetuses was detected in an adipose tissue-specific manner (P<0.10). Based on adipose tissue-specific effects of maternal nutrition, these findings suggested that poor maternal nutrition in Wagyu cattle increased BAT development in SAT, TVAT and PAT, while elevated maternal nutrition stimulated fetal SAT development compared with that of TVAT and PAT.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazunaga Oshima
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Yuji Goto
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Ichiro Oshima
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Susumu Muroya
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Mitsue Sano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Gotoh
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
- *Correspondence: Takafumi Gotoh,
| |
Collapse
|
9
|
Abnormally localized DLK1 interacts with NCOR1 in non-small cell lung cancer cell nuclear. Biosci Rep 2019; 39:220954. [PMID: 31661545 PMCID: PMC6911156 DOI: 10.1042/bsr20192362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Delta-like homolog 1 (DLK1) regulates noncanonical Notch signaling pathway as ligand. DLK1 was abnormally expressed in a variety of tumors, affecting tumorigenesis and developments. The biological function of DLK1 toward cell proliferation and signaling activation was controversial across different cell types. Two currently known isoforms of DLK1, which are membrane-tethered isoform and soluble isoform, are believed to be the key of DLK1 dual behaviors. While these isoforms are not enough to explain the phenomena, our observations offer the possibility of a third isoform of DLK1. In the present study, we verified the nuclear localization of DLK1 in lung cancer cells. The nuclear localized DLK1 was observed in 107 of 351 non-small cell lung cancer (NSCLC) samples and was associated with tissue differentiation and tumor size. Through co-immunoprecipitation (co-IP) combined mass spectrometry (MS), we identified nuclear receptor corepressor 1 (NCOR1) as DLK1's novel interaction protein and confirmed their interaction in nuclear. We analyzed the expression of NCOR1 in two independent cohorts and demonstrated that NCOR1 is a tumor suppressor and has prognosis potential in lung squamous carcinomas. At last, we analyzed the colocalization of DLK1 and NCOR1 in 147 NSCLC samples by immunohistochemistry (IHC). The result indicated NCOR1 might participate with nuclear localized DLK1 in regulating cell differentiation.
Collapse
|
10
|
MicroRNA-15a Regulates the Differentiation of Intramuscular Preadipocytes by Targeting ACAA1, ACOX1 and SCP2 in Chickens. Int J Mol Sci 2019; 20:ijms20164063. [PMID: 31434294 PMCID: PMC6720712 DOI: 10.3390/ijms20164063] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Our previous studies showed that microRNA-15a (miR-15a) was closely related to intramuscular fat (IMF) deposition in chickens; however, its regulatory mechanism remains unclear. Here, we evaluated the expression characteristics of miR-15a and its relationship with the expression of acetyl-CoA acyltransferase 1 (ACAA1), acyl-CoA oxidase 1 (ACOX1) and sterol carrier protein 2 (SCP2) by qPCR analysis in Gushi chicken breast muscle at 6, 14, 22, and 30 weeks old, where we performed transfection tests of miR-15a mimics in intramuscular preadipocytes and verified the target gene of miR-15a in chicken fibroblasts (DF1). The miR-15a expression level at 30 weeks increased 13.5, 4.5, and 2.7-fold compared with the expression levels at 6, 14, and 22 weeks, respectively. After 6 days of induction, miR-15a over-expression significantly promoted intramuscular adipogenic differentiation and increased cholesterol and triglyceride accumulation in adipocytes. Meanwhile, 48 h after transfection with miR-15a mimics, the expression levels of ACAA1, ACOX1 and SCP2 genes decreased by 56.52%, 31.18% and 37.14% at the mRNA level in intramuscular preadipocytes. In addition, the co-transfection of miR-15a mimics and ACAA1, ACOX1 and SCP2 3′UTR (untranslated region) dual-luciferase vector significantly inhibited dual-luciferase activity in DF1 cells. Taken together, our data demonstrate that miR-15a can reduce fatty acid oxidation by targeting ACAA1, ACOX1, and SCP2, which subsequently indirectly promotes the differentiation of chicken intramuscular preadipocytes.
Collapse
|
11
|
Obesity, Insulin Resistance, and Colorectal Cancer: Could miRNA Dysregulation Play A Role? Int J Mol Sci 2019; 20:ijms20122922. [PMID: 31207998 PMCID: PMC6628223 DOI: 10.3390/ijms20122922] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with insulin resistance and low-grade inflammation. Insulin resistance is a risk factor for cancer. A recent chapter in epigenetics is represented by microRNAs (miRNAs), which post-transcriptionally regulate gene expression. Dysregulated miRNA profiles have been associated with diseases including obesity and cancer. Herein we report dysregulated miRNAs in obesity both in animal models and in humans, and we also document dysregulated miRNAs in colorectal cancer (CRC), as example of an obesity-related cancer. Some of the described miRNAs are found to be similarly dysregulated both in obesity, insulin resistance (IR), and CRC. Thus, we present miRNAs as a potential molecular link between obesity and CRC onset and development, giving a new perspective on the role of miRNAs in obesity-associated cancers.
Collapse
|
12
|
Traustadóttir GÁ, Lagoni LV, Ankerstjerne LBS, Bisgaard HC, Jensen CH, Andersen DC. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev 2019; 46:17-27. [DOI: 10.1016/j.cytogfr.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
|
13
|
Tan Y, Gan M, Fan Y, Li L, Zhong Z, Li X, Bai L, Zhao Y, Niu L, Shang Y, Zhang S, Zhu L. miR-10b-5p regulates 3T3-L1 cells differentiation by targeting Apol6. Gene 2018; 687:39-46. [PMID: 30423386 DOI: 10.1016/j.gene.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that have been proposed to control or fine-tune complex genetic pathways by post-transcriptional regulation of target genes. It was proved that numerous miRNAs have influence on the biology of adipocytes as well as on the function of adipose tissues. This study shows that miR-10b-5p expression was decreased in mice, rats, and human under obesity. In addition, the obtained results indicated that the expression level of miR-10b-5p was increased in 3T3-L1 pre-adipocytes without manifesting a significant role in 3T3-L1 cells proliferation. On the other hand, the downregulation of miR-10b-5p by the inhibitor played a role in 3T3-L1 cells differentiation and adipogenesis. Our results strongly suggest that Apol6 was the target gene of miR-10b-5p. The inhibition of miR-10b-5p promoted the differentiation of 3T3-L1 cells and adipogenesis by upregulating the Apol6 expression. Then, the upregulated Apol6 acted as an oncogene in certain obesity-related cancers. These results indicate that miR-10b-5p may have a therapeutic significance for obesity and obesity-related cancers.
Collapse
Affiliation(s)
- Ya Tan
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, Guizhou, China
| | - Mailin Gan
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yuan Fan
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Liang Li
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, Guizhou, China
| | - Zhijun Zhong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan, Animal Science Academy, Chengdu 610066, China
| | - Xuewei Li
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Bai
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ye Zhao
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lili Niu
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yishun Shang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Science, Guiyang 550005, Guizhou, China
| | - Shunhua Zhang
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Zhu
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
Liu Z, Sun C, Yan Y, Li G, Wu G, Liu A, Yang N. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens. Front Genet 2018; 9:128. [PMID: 29755503 PMCID: PMC5932955 DOI: 10.3389/fgene.2018.00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Egg weight (EW) is an economically-important trait and displays a consecutive increase with the hen's age. Because extremely large eggs cause a range of problems in the poultry industry, we performed a genome-wide association study (GWAS) in order to identify genomic variations that are associated with EW. We utilized the Affymetrix 600 K high density SNP array in a population of 1,078 hens at seven time points from day at first egg to 80 weeks age (EW80). Results reveal that a 90 Kb genomic region (169.42 Mb ~ 169.51 Mb) in GGA1 is significantly associated with EW36 and is also potentially associated with egg weight at 28, 56, and 66 week of age. The leading SNP could account for 3.66% of the phenotypic variation, while two promising genes (DLEU7 and MIR15A) can be mapped to this narrow significant region and may affect EW in a pleiotropic manner. In addition, one gene (CECR2 on GGA1) and two genes (MEIS1 and SPRED2 on GGA3), which involved in the processes of embryogenesis and organogenesis, were also considered to be candidates related to first egg weight (FEW) and EW56, respectively. Findings in our study could provide worthy theoretical basis to generate eggs of ideal size based on marker assisted breeding selection.
Collapse
Affiliation(s)
- Zhuang Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiyuan Yan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Engineering Research Center of Layer, Beijing, China
| | - Guangqi Li
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Aiqiao Liu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Abstract
Obesity, which has become a major global epidemic, is associated with numerous comorbidities and nearly every chronic condition. Mitochondria play a central role in this disorder, as they control cell metabolism, regulating important processes, such as ATP production, lipid β-oxidation, oxidative stress, and inflammation. MicroRNAs (miRs) have been shown to regulate many biological processes associated with obesity, comprising adipocyte differentiation, insulin action, and fat metabolism. In addition, recent studies have confirmed that miRs are important regulators of mitochondrial function by either directly modulating mitochondrial proteins or targeting mitochondrial regulators, thereby modulating metabolic process in the context of obesity. In this review, we describe the different roles of mitochondria in obesity, specifically in adipose tissue, and those miRs that are involved in mitochondrial dysfunction in this disease.
Collapse
Affiliation(s)
- Mora Murri
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| | - Hamid El Azzouzi
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| |
Collapse
|
16
|
Martin EC, Qureshi AT, Llamas CB, Burow ME, King AG, Lee OC, Dasa V, Freitas MA, Forsberg JA, Elster EA, Davis TA, Gimble JM. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation. Adipocyte 2018; 7:96-105. [PMID: 29411671 DOI: 10.1080/21623945.2018.1423911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.
Collapse
Affiliation(s)
- E. C. Martin
- Department for Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA
| | - A. T. Qureshi
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, USA
| | - C. B. Llamas
- Center for Regenerative Medicine and Stem Cell Therapy, Tulane University School of Medicine, New Orleans, LA, USA
| | - M. E. Burow
- Department of Hematology/Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - A. G. King
- Department of Orthopedics, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - O. C. Lee
- Department of Orthopedics, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - V. Dasa
- Department of Orthopedics, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - M. A. Freitas
- Department of Molecular Virology, Immunology Medical & Genetics, Ohio State University, Columbus, OH, USA
| | - J. A. Forsberg
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center Bethesda, MD, USA
| | - E. A. Elster
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center Bethesda, MD, USA
| | - T. A. Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center Bethesda, MD, USA
| | - J. M. Gimble
- Departments of Medicine, Structural and Cellular Biology, & Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- LaCell LLC, New Orleans, LA, USA
- Center for Regenerative Medicine and Stem Cell Therapy, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
17
|
Kasiappan R, Rajarajan D. Role of MicroRNA Regulation in Obesity-Associated Breast Cancer: Nutritional Perspectives. Adv Nutr 2017; 8:868-888. [PMID: 29141971 PMCID: PMC5682994 DOI: 10.3945/an.117.015800] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is the most common malignancy diagnosed in women, and the incidence of breast cancer is increasing every year. Obesity has been identified as one of the major risk factors for breast cancer progression. The mechanisms by which obesity contributes to breast cancer development is not yet understood; however, there are a few mechanisms counted as potential producers of breast cancer in obesity, including insulin resistance, chronic inflammation and inflammatory cytokines, adipokines, and sex hormones. Recent emerging evidence suggests that alterations in microRNA (miRNA) expressions are found in several diseases, including breast cancer and obesity; however, miRNA roles in obesity-linked breast cancer are beginning to unravel. miRNAs are thought to be potential noninvasive biomarkers for diagnosis and prognosis of cancer patients with comorbid conditions of obesity as well as therapeutic targets. Recent studies have evidenced that nutrients and other dietary factors protect against cancer and obesity through modulation of miRNA expressions. Herein, we summarize a comprehensive overview of up-to-date information related to miRNAs and their molecular targets involved in obesity-associated breast cancer. We also address the mechanisms by which dietary factors modulate miRNA expression and its protective roles in obesity-associated breast cancer. It is hoped that this review would provide new therapeutic strategies for the treatment of obesity-associated breast cancer to reduce the burden of breast cancer.
Collapse
Affiliation(s)
- Ravi Kasiappan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Dheeran Rajarajan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
18
|
Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. GENES AND NUTRITION 2017; 12:23. [PMID: 28974990 PMCID: PMC5613467 DOI: 10.1186/s12263-017-0577-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Abstract
In recent years, the link between regulatory microRNAs (miRNAs) and diseases has been the object of intensive research. miRNAs have emerged as key mediators of metabolic processes, playing crucial roles in maintaining/altering physiological processes, including energy balance and metabolic homeostasis. Altered miRNAs expression has been reported in association with obesity, both in animal and human studies. Dysregulation of miRNAs may affect the status and functions of different tissues and organs, including the adipose tissue, pancreas, liver, and muscle, possibly contributing to metabolic abnormalities associated with obesity and obesity-related diseases. More recently, the discovery of circulating miRNAs easily detectable in plasma and other body fluids has emphasized their potential as both endocrine signaling molecules and disease indicators. In this review, the status of current research on the role of miRNAs in obesity and related metabolic abnormalities is summarized and discussed.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Alfonso Siani
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
19
|
Yuan J, Chen S, Shi F, Wu G, Liu A, Yang N, Sun C. Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens. BMC Genomics 2017; 18:699. [PMID: 28877683 PMCID: PMC5586008 DOI: 10.1186/s12864-017-4092-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022] Open
Abstract
Background Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late-laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81–82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants. Results The heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55–45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds. Bioinformatics analysis further revealed that gga-mir-15a could act on many target genes, such as forkhead box O1 (FOXO1) that is involved in the insulin-signaling pathway, which influences nutrient metabolism in many organisms. Additionally, some suggestively significant variants, located on GGA3 and GGA9, were identified to associate with FI and RFI. Conclusions This GWA analysis was conducted on feed intake and efficiency traits for chickens and was innovative for application in the late laying period. Our findings can be used as a reference in the genomic breeding programs for increasing the efficiency performance of old hens and to improve our understanding of the molecular determinants for feed efficiency. Electronic supplementary material The online version of this article (10.1186/s12864-017-4092-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingwei Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fengying Shi
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Aiqiao Liu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Chu M, Zhao Y, Yu S, Hao Y, Zhang P, Feng Y, Zhang H, Ma D, Liu J, Cheng M, Li L, Shen W, Cao H, Li Q, Min L. miR-15b negatively correlates with lipid metabolism in mammary epithelial cells. Am J Physiol Cell Physiol 2017; 314:C43-C52. [PMID: 28835435 DOI: 10.1152/ajpcell.00115.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammary epithelial cells are regulated by steroid hormones, growth factors, and even microRNAs. miR-15b has been found to regulate lipid metabolism in adipocytes; however, its effects on lipid metabolism in mammary epithelial cells, the cells of lipid synthesis and secretion, are as yet unknown. The main purpose of this investigation was to explore the effect of miR-15b on lipid metabolism in mammary epithelial cells, along with the underlying mechanisms. miR-15b was overexpressed or inhibited by miRNA mimics or inhibitors; subsequently, lipid formation in mammary epithelial cells, and proteins related to lipid metabolism, were investigated. Through overexpression or inhibition of miR-15b expression, the current investigation found that miR-15b downregulates lipid metabolism in mammary epithelial cells and is expressed differentially at various stages of mouse and goat mammary gland development. Inhibition of miR-15b expression increased lipid content in mammary epithelial cells through elevation of the lipid synthesis enzyme fatty acid synthetase (FASN), and overexpression of miR-15b reduced lipid content in mammary epithelial cells with decreasing levels of FASN. Moreover, the steroid hormones estradiol and progesterone decreased miR-15b expression with a subsequent increase in lipid formation in mammary epithelial cells. The expression of miR-15b was lower during lactation and negatively correlated with lipid synthesis proteins, which suggests that it may be involved in lipid synthesis and milk production. miR-15b might be a useful target for altering lipid production and milk yield.
Collapse
Affiliation(s)
- Meiqiang Chu
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Shuai Yu
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Yanan Hao
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Pengfei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing , People's Republic of China
| | - Dongxue Ma
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Ming Cheng
- Qingdao Veterinary and Livestock Administration , Qingdao , People's Republic of China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| | - Hongfang Cao
- Laiwu Veterinary and Livestock Administration, Laiwu, People's Republic of China
| | - Qiang Li
- Laiwu Veterinary and Livestock Administration, Laiwu, People's Republic of China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University , Qingdao , People's Republic of China
| |
Collapse
|
21
|
Traustadóttir GÁ, Jensen CH, Garcia Ramirez JJ, Beck HC, Sheikh SP, Andersen DC. The non-canonical NOTCH1 ligand Delta-like 1 homolog (DLK1) self interacts in mammals. Int J Biol Macromol 2017; 97:460-467. [DOI: 10.1016/j.ijbiomac.2017.01.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
|
22
|
Beezhold K, Klei LR, Barchowsky A. Regulation of cyclin D1 by arsenic and microRNA inhibits adipogenesis. Toxicol Lett 2016; 265:147-155. [PMID: 27932253 DOI: 10.1016/j.toxlet.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 12/19/2022]
Abstract
Low-dose chronic exposure to arsenic in drinking water represents a global public health concern with established risks for metabolic and cardiovascular disease, as well as cancer. While the linkage between arsenic and disease is strong, further understanding of the molecular mechanisms of its pathogenicity is required. Previous reports demonstrated the ability of arsenic to interfere with adipogenesis, which may mediate its effects in promoting metabolic disease. We hypothesized that microRNA are important regulators of most if not all mesenchymal stem cell processes that are dysregulated by arsenic exposure to impair lipogenesis. Arsenic increased the expression of miR-29b in white adipose tissue, as well as human mesenchymal stem cells (hMSCs) isolated from adipose tissue. Exposing hMSCs to arsenic increased abundance of miR-29b and cyclin D1 to promote proliferation over differentiation. Paradoxically, inhibition of miR-29b enhanced the inhibitory effect of arsenic on differentiation. This paradox was attributed to a requirement for miR-29 in regulating cyclin D1 expression as stable inhibition of miR-29b eliminated the cyclic pattern of cyclin D1 expression. Temporal regulation of cyclin D1 is critical for adipogenic differentiation, and the data suggest a paradigm where arsenic disruption of miR-29b regulatory pathways impairs adipogenic differentiation and ultimately adipose metabolic homeostasis.
Collapse
Affiliation(s)
- Kevin Beezhold
- Department of Environmental and Occupational Health, Graduate School of Public Health, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Linda R Klei
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
23
|
Wang W, Cheng M, Qiao S, Wang Y, Li H, Wang N. Gga-miR-21 inhibits chicken pre-adipocyte proliferation in part by down-regulating Kruppel-like factor 5. Poult Sci 2016; 96:200-210. [PMID: 27587730 DOI: 10.3382/ps/pew281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/29/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
Gga-miR-21 is abundantly expressed in chicken pre-adipocytes, but its role is unclear. The present study investigated the role of gga-miR-21 in chicken pre-adipocyte proliferation. Cell proliferation assay and gene expression analysis of proliferating cell nuclear antigen (PCNA) showed that the gga-miR-21 mimic inhibited pre-adipocyte proliferation. In contrast, the gga-miR-21 inhibitor enhanced pre-adipocyte proliferation. The subsequent investigation identified Kruppel-like factor 5 (KLF5) mRNA as a target of gga-miR-21. The gga-miR-21 mimic inhibited KLF5 3'UTR reporter activity and decreased endogenous KLF5 expression in primary pre-adipocytes. KLF5 knockdown using RNAi had a similar effect to that of the gga-miR-21 mimic on cell proliferation. The promoting effect of the gga-miR-21 inhibitor on pre-adipocyte proliferation was partially attenuated by KLF5 knockdown. Taken together, our results demonstrated that miR-21 inhibits chicken pre-adipocyte proliferation, at least in part, by targeting KLF5.
Collapse
Affiliation(s)
- Weishi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Min Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shupei Qiao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Wu YY, Huang XM, Liu J, Cha Y, Chen ZP, Wang F, Xu J, Sheng L, Ding HY. Functional study of the upregulation of miRNA-27a and miRNA-27b in 3T3-L1 cells in response to berberine. Mol Med Rep 2016; 14:2725-31. [DOI: 10.3892/mmr.2016.5545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
|
25
|
Price NL, Fernández-Hernando C. miRNA regulation of white and brown adipose tissue differentiation and function. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2104-2110. [PMID: 26898181 DOI: 10.1016/j.bbalip.2016.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/06/2023]
Abstract
Obesity and metabolic disorders are a major health concern in all developed countries and a primary focus of current medical research is to improve our understanding treatment of metabolic diseases. One avenue of research that has attracted a great deal of recent interest focuses upon understanding the role of miRNAs in the development of metabolic diseases. miRNAs have been shown to be dysregulated in a number of different tissues under conditions of obesity and insulin resistance, and have been demonstrated to be important regulators of a number of critical metabolic functions, including insulin secretion in the pancreas, lipid and glucose metabolism in the liver, and nutrient signaling in the hypothalamus. In this review we will focus on the important role of miRNAs in regulating the differentiation and function of white and brown adipose tissue and the potential importance of this for maintaining metabolic function and treating metabolic diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. Mol Cell Biol 2016; 36:1180-93. [PMID: 26830228 DOI: 10.1128/mcb.00745-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022] Open
Abstract
White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease.
Collapse
|
27
|
Li Y, Li X, Sun WK, Cheng C, Chen YH, Zeng K, Chen X, Gu Y, Gao R, Liu R, Lv X. Comparison of liver microRNA transcriptomes of Tibetan and Yorkshire pigs by deep sequencing. Gene 2016; 577:244-50. [DOI: 10.1016/j.gene.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022]
|
28
|
Hsieh CH, Rau CS, Wu SC, Yang JCS, Wu YC, Lu TH, Tzeng SL, Wu CJ, Lin CW. Weight-reduction through a low-fat diet causes differential expression of circulating microRNAs in obese C57BL/6 mice. BMC Genomics 2015; 16:699. [PMID: 26377847 PMCID: PMC4571067 DOI: 10.1186/s12864-015-1896-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 09/07/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND To examine the circulating microRNA (miRNA) expression profile in a mouse model of diet-induced obesity (DIO) with subsequent weight reduction achieved via low-fat diet (LFD) feeding. RESULTS Eighteen C57BL/6NCrl male mice were divided into three subgroups: (1) control, mice were fed a standard AIN-76A (fat: 11.5 kcal %) diet for 12 weeks; (2) DIO, mice were fed a 58 kcal % high-fat diet (HFD) for 12 weeks; and (3) DIO + LFD, mice were fed a HFD for 8 weeks to induce obesity and then switched to a 10.5 kcal % LFD for 4 weeks. A switch to LFD feeding led to decreases in body weight, adiposity, and blood glucose levels in DIO mice. Microarray analysis of miRNA using The Mouse & Rat miRNA OneArray® v4 system revealed significant alterations in the expression of miRNAs in DIO and DIO + LFD mice. Notably, 23 circulating miRNAs (mmu-miR-16, mmu-let-7i, mmu-miR-26a, mmu-miR-17, mmu-miR-107, mmu-miR-195, mmu-miR-20a, mmu-miR-25, mmu-miR-15b, mmu-miR-15a, mmu-let-7b, mmu-let-7a, mmu-let-7c, mmu-miR-103, mmu-let-7f, mmu-miR-106a, mmu-miR-106b, mmu-miR-93, mmu-miR-23b, mmu-miR-21, mmu-miR-30b, mmu-miR-221, and mmu-miR-19b) were significantly downregulated in DIO mice but upregulated in DIO + LFD mice. Target prediction and function annotation of associated genes revealed that these genes were predominantly involved in metabolic, insulin signaling, and adipocytokine signaling pathways that directly link the pathophysiological changes associated with obesity and weight reduction. CONCLUSIONS These results imply that obesity-related reductions in the expression of circulating miRNAs could be reversed through changes in metabolism associated with weight reduction achieved through LFD feeding.
Collapse
Affiliation(s)
- Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| | - Johnson Chia-Shen Yang
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| | - Yi-Chan Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| | - Tsu-Hsiang Lu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| | - Siou-Ling Tzeng
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| | - Chia-Jung Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| | - Chia-Wei Lin
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Song District, Kaohsiung City, 833, Taiwan.
| |
Collapse
|
29
|
Kim YJ, Min TS, Seo KS, Kim SH. Expression of pref-1/dlk-1 is regulated by microRNA-143 in 3T3-L1 cells. Mol Biol Rep 2015; 42:617-24. [PMID: 25366176 DOI: 10.1007/s11033-014-3807-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
Preadipocyte factor 1 (Pref-1), also known as a delta-like 1 protein, is a transmembrane and secreted protein containing the epidermal growth factor-like repeat. Pref-1 inhibits adipocyte differentiation by activating the ERK1/2 pathway. MicroRNAs, a new class of small noncoding RNAs of 20-24 nucleotides, act as negative regulators of gene expression and result in mRNA degradation or translational repression. MicroRNA-143 (miR-143) is known to induce adipocyte differentiation; however, miR-143 targets in the regulation of adipocyte differentiation remain unknown. In this study, we investigated whether pref-1 is a miR-143 target to regulate adipogenesis. After the induction of adipocyte differentiation the level of miR-143 was increased, whereas the expression of pref-1 mRNA was decreased. The pref-1 protein level was also down-regulated in preadipocytes ectopically expressing miR-143, and recovered by miR-143 inhibitor. The binding region for miR-143 was predicted to be located between positions 247 and 252 in the 3'-UTR of pref-1. The luciferase activity of the vector containing the wild-type 3'-UTR of pref-1 was decreased by 65 % in cells transfected with miR-143 mimic compared to that of the corresponding control. In contrast, the activity of the pref-1 mutant cells was not affected by the treatment with miR-143 mimic. The ectopic expression of miR-143 mimic suppressed the phosphorylation of ERK1/2 induced by pref-1 in 3T3-L1 cells. However, the suppressed phosphorylation was restored by miR-143 inhibitor. Taken together, these data suggest that miR-143 promotes adipogenesis by directly modulating the pref-1 expression in adipocytes.
Collapse
Affiliation(s)
- Yoon-Jin Kim
- Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul, 130-701, Korea
| | | | | | | |
Collapse
|
30
|
Wang W, Du ZQ, Cheng B, Wang Y, Yao J, Li Y, Cao Z, Luan P, Wang N, Li H. Expression profiling of preadipocyte microRNAs by deep sequencing on chicken lines divergently selected for abdominal fatness. PLoS One 2015; 10:e0117843. [PMID: 25675096 PMCID: PMC4326283 DOI: 10.1371/journal.pone.0117843] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/01/2015] [Indexed: 12/26/2022] Open
Abstract
Through posttranscriptional gene regulation, microRNA (miRNA) is linked to a wide variety of biological processes, including adipogenesis and lipid metabolism. Although miRNAs in mammalian adipogenesis have been worked on extensively, their study in chicken adipogenesis is still very limited. To find miRNAs potentially important for chicken preadipocyte development, we compared the preadipocyte miRNA expression profiles in two broiler lines divergently selected for abdominal fat content, by sequencing two small RNA libraries constructed for primary preadipocytes isolated from abdominal adipose tissues. After bioinformatics analyses, from chicken miRNAs deposited in miRBase 20.0, we identified 225 miRNAs to be expressed in preadipocytes, 185 in the lean line and 200 in the fat line (derived from 208 and 203 miRNA precursors, respectively), which corresponds to 114 miRNA families. The let-7 family miRNAs were the most abundant. Furthermore, we validated the sequencing results of 15 known miRNAs by qRT-PCR, and confirmed that the expression levels of most miRNAs correlated well with those of Solexa sequencing. A total of 33 miRNAs was significantly differentially expressed between the two chicken lines (P<0.05). Gene ontology analysis revealed that they could target genes enriched in the regulation of gene transcription and chromatin function, response to insulin stimulation, and IGF-1 signaling pathways, which could have important roles in preadipocyte development. Therefore, a valuable information and resource of miRNAs on chicken adipogenesis were provided in this study. Future functional investigations on these miRNAs could help explore related genes and molecular networks fundamental to preadipocyte development.
Collapse
Affiliation(s)
- Weishi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Jing Yao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
- * E-mail: (NW); (HL)
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P.R. China
- * E-mail: (NW); (HL)
| |
Collapse
|
31
|
Yip DKS, Pang IK, Yip KY. Systematic exploration of autonomous modules in noisy microRNA-target networks for testing the generality of the ceRNA hypothesis. BMC Genomics 2014; 15:1178. [PMID: 25539629 PMCID: PMC4367885 DOI: 10.1186/1471-2164-15-1178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In the competing endogenous RNA (ceRNA) hypothesis, different transcripts communicate through a competition for their common targeting microRNAs (miRNAs). Individual examples have clearly shown the functional importance of ceRNA in gene regulation and cancer biology. It remains unclear to what extent gene expression levels are regulated by ceRNA in general. One major hurdle to studying this problem is the intertwined connections in miRNA-target networks, which makes it difficult to isolate the effects of individual miRNAs. RESULTS Here we propose computational methods for decomposing a complex miRNA-target network into largely autonomous modules called microRNA-target biclusters (MTBs). Each MTB contains a relatively small number of densely connected miRNAs and mRNAs with few connections to other miRNAs and mRNAs. Each MTB can thus be individually analyzed with minimal crosstalk with other MTBs. Our approach differs from previous methods for finding modules in miRNA-target networks by not making any pre-assumptions about expression patterns, thereby providing objective information for testing the ceRNA hypothesis. We show that the expression levels of miRNAs and mRNAs in an MTB are significantly more anti-correlated than random miRNA-mRNA pairs and other validated and predicted miRNA-target pairs, demonstrating the biological relevance of MTBs. We further show that there is widespread correlation of expression between mRNAs in same MTBs under a wide variety of parameter settings, and the correlation remains even when co-regulatory effects are controlled for, which suggests potential widespread expression buffering between these mRNAs, which is consistent with the ceRNA hypothesis. Lastly, we also propose a potential use of MTBs in functional annotation of miRNAs. CONCLUSIONS MTBs can be used to help identify autonomous miRNA-target modules for testing the generality of the ceRNA hypothesis experimentally. The identified modules can also be used to test other properties of miRNA-target networks in general.
Collapse
Affiliation(s)
- Danny Kit-Sang Yip
- />Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Iris K Pang
- />School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kevin Y Yip
- />Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- />Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- />CUHK-BGI Innovation Institute of Trans-omics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
32
|
Price NL, Ramírez CM, Fernández-Hernando C. Relevance of microRNA in metabolic diseases. Crit Rev Clin Lab Sci 2014; 51:305-20. [PMID: 25034902 DOI: 10.3109/10408363.2014.937522] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is a complex metabolic condition caused by abnormal adipose deposition and function, dyslipidemia and hyperglycemia, which affects >47 million American adults and ∼1 million children. Individuals with the metabolic syndrome have essentially twice the risk for developing cardiovascular disease (CVD) and Type 2 diabetes mellitus (T2D), compared to those without the syndrome. In the search for improved and novel therapeutic strategies, microRNAs (miRNA) have been shown to be interesting targets due to their regulatory role on gene networks controlling different crucial aspects of metabolism, including lipid and glucose homeostasis. More recently, the discovery of circulating miRNAs suggest that miRNAs may be involved in facilitating metabolic crosstalk between organs as well as serving as novel biomarkers of diseases, including T2D and atherosclerosis. These findings highlight the importance of miRNAs for regulating pathways that underlie metabolic diseases, and their potential as therapeutic targets for the development of novel treatments.
Collapse
|
33
|
Eskildsen TV, Schneider M, Sandberg MB, Skov V, Brønnum H, Thomassen M, Kruse TA, Andersen DC, Sheikh SP. The microRNA-132/212 family fine-tunes multiple targets in Angiotensin II signalling in cardiac fibroblasts. J Renin Angiotensin Aldosterone Syst 2014; 16:1288-97. [PMID: 25031299 DOI: 10.1177/1470320314539367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are emerging as key regulators of cardiovascular development and disease; however, the cardiac miRNA target molecules are not well understood. We and others have described the Angiotensin II (AngII)-induced miR-132/212 family as novel regulators of cardiovascular function including regulation of cardiac hypertrophy, heart failure and blood pressure possibly through AT1R signalling. However, the miR-132/212 targets in the heart remain unknown. MATERIALS AND METHODS To understand the role of these miRNAs in cardiac signalling networks, we undertook comprehensive in silico and in vitro experiments to identify miR-132/212 molecular targets in primary rat cardiac fibroblasts. RESULTS MiR-132/212 overexpression increased fibroblast cell size and mRNA arrays detected several hundred genes that were differentially expressed, including a wide panel of receptors, signalling molecules and transcription factors. Subsequent comprehensive in silico analysis identified 24 target genes, of which 22 genes were qPCR validated. We identified seven genes involved in AngII signalling pathways. CONCLUSION We here report novel insight of an extensive network of molecular pathways that fine-tuned by miR-132/212, suggesting a role for this miRNA family as master signalling switches in cardiac fibroblasts. Our data underscore the potential for miRNA tools to manipulate a large array of molecules and thereby control biological function.
Collapse
Affiliation(s)
- Tilde V Eskildsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Mikael Schneider
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Maria B Sandberg
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Vibe Skov
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Hasse Brønnum
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Ditte C Andersen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Søren P Sheikh
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| |
Collapse
|
34
|
Dong P, Mai Y, Zhang Z, Mi L, Wu G, Chu G, Yang G, Sun S. MiR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1. Acta Biochim Biophys Sin (Shanghai) 2014; 46:565-71. [PMID: 24862853 DOI: 10.1093/abbs/gmu043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetes and many other metabolism syndromes are closely related to obesity. To reveal the underlying mechanism of fat deposition, an increasing number of studies are focusing on the functions of miRNAs during adipocytes development. Previous studies have proved that miR-15a/b play important roles in multiple physiological processes; however, their functions during adipogenesis remain unclear. To reveal this, we detected the expression profiles of miR-15a/b during adipogenesis in porcine pre-adipocyte, and found that their expression levels increased in the early stage of adipocyte differentiation and dropped after day 4. Moreover, over-expression of miR-15a/b in porcine pre-adipocytes promoted adipocyte differentiation and lipid accumulation. Target genes of miR-15a/b were predicted and examined, which revealed that Forkhead box protein O1 (FoxO1) is the target gene of miR-15a/b. The inhibition of FoxO1 expression level caused by miR-15a/b over-expression had a positive effect on adipogenesis. Thus, we conclude that miR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1.
Collapse
Affiliation(s)
- Peiyue Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yin Mai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhenyu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lin Mi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guofang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shiduo Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
35
|
Abstract
Adipocyte differentiation, termed adipogenesis, is a complicated process in which pluripotent mesenchymal stem cells differentiate into mature adipocytes. The process of adipocyte differentiation is tightly regulated by a number of transcription factors, hormones and signaling pathway molecules. Recent studies have demonstrated that microRNAs, which belong to small noncoding RNA species, are also involved in adipocyte differentiation. In vivo and in vitro studies have revealed that various microRNAs affect adipogenesis by targeting several adipogenic transcription factors and key signaling molecules. In this review, we will summarize the roles of microRNAs in adipogenesis and their target genes associated with each stage of adipocyte differentiation.
Collapse
Affiliation(s)
- You Hwa Son
- Seoul National University School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Sojeong Ka
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - A Young Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jae Bum Kim
- Seoul National University School of Biological Sciences, Seoul National University, Seoul, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| |
Collapse
|
36
|
Cai Z, Zhang L, Chen M, Jiang X, Xu N. Castration-induced changes in microRNA expression profiles in subcutaneous adipose tissue of male pigs. J Appl Genet 2014; 55:259-66. [PMID: 24464334 DOI: 10.1007/s13353-014-0194-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/08/2013] [Accepted: 01/10/2014] [Indexed: 11/24/2022]
Abstract
MicroRNAs (miRNAs) are class of molecular regulators found to participate in numerous biological processes, such as adipogenesis and obesity in mammals. To determine the roles of miRNAs involved in castration-induced body fatness, we investigated the different miRNA expression patterns in subcutaneous adipose tissue between intact and castrated male pigs. Our results showed that castration led to decrease serum testosterone but increase serum Leptin levels (P < 0.01). Moreover, castration also increased adipocyte size, body fat content and backfat thickness in male pigs (P < 0.01). Meanwhile, miRNA expression profiles in adipose tissue were changed by castration, and 18 miRNAs were considered as the differentially expressed candidates between intact and castrated male pigs. Furthermore, functional analysis indicated that the differential expressed miRNAs and their target genes are involved in the regulation of fatty acid metabolism. In brief, our present study provides a comprehensive view on how miRNAs works in subcutaneous adipose tissue with castration. These results suggested that miRNAs might play an important role in the castration-induced fat deposition in male pigs.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | | | | | | | | |
Collapse
|
37
|
Ma J, Jiang Z, He S, Liu Y, Chen L, Long K, Jin L, Jiang A, Zhu L, Wang J, Li M, Li X. Intrinsic features in microRNA transcriptomes link porcine visceral rather than subcutaneous adipose tissues to metabolic risk. PLoS One 2013; 8:e80041. [PMID: 24223210 PMCID: PMC3819305 DOI: 10.1371/journal.pone.0080041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/27/2013] [Indexed: 12/05/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNA ∼22 nucleotides in length that can regulate the expression of a wide range of coding genes at the post-transcriptional level. Visceral adipose tissues (VATs) and subcutaneous adipose tissues (SATs), the two main fat compartments in mammals, are anatomically, physiologically, metabolically, and clinically distinct. Various studies of adipose tissues have focused mainly on DNA methylation, and mRNA and protein expression, nonetheless little research sheds directly light on the miRNA transcriptome differences between these two distinct adipose tissue types. Here, we present a comprehensive investigation of miRNA transcriptomes across six variant porcine adipose tissues by small RNA-sequencing. We identified 219 known porcine miRNAs, 97 novel miRNA*s, and 124 miRNAs that are conserved to other mammals. A set of universally abundant miRNAs (i.e., miR-148a-3p, miR-143-3p, miR-27b-3p, miR-let-7a-1-5p, and miR-let-7f-5p) across the distinct adipose tissues was found. This set of miRNAs may play important housekeeping roles that are involved in adipogenesis. Clustering analysis indicated significant variations in miRNA expression between the VATs and SATs, and highlighted the role of the greater omentum in responding to potential metabolic risk because of the observed enrichment in this tissue of the immune- and inflammation-related miRNAs, such as the members of miR-17-92 cluster and miR-181 family. Differential expression of the miRNAs between the VATs and SATs, and miRNA target prediction analysis revealed that the VATs-specific enriched miRNAs were associated mainly with immune and inflammation responses. In summary, the differences of miRNA expression between the VATs and SATs revealed some of their intrinsic differences and indicated that the VATs might be closely associated with increased risk of metabolic disorders.
Collapse
Affiliation(s)
- Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Shen He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yingkai Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Lei Chen
- Chongqing Academy of Animal Science, Chongqing, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - An'an Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Li Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
- * E-mail: (ML); (XL)
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
- * E-mail: (ML); (XL)
| |
Collapse
|
38
|
Meng DM, Wang L, Xu JR, Yan SL, Zhou L, Mi QS. Fabp4-Cre-mediated deletion of the miRNA-processing enzyme Dicer causes mouse embryonic lethality. Acta Diabetol 2013; 50:823-4. [PMID: 21984007 DOI: 10.1007/s00592-011-0335-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 09/17/2011] [Indexed: 02/01/2023]
Affiliation(s)
- Dong-Mei Meng
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Li H, Chen X, Guan L, Qi Q, Shu G, Jiang Q, Yuan L, Xi Q, Zhang Y. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS One 2013; 8:e71568. [PMID: 24098322 PMCID: PMC3787936 DOI: 10.1371/journal.pone.0071568] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/05/2013] [Indexed: 11/17/2022] Open
Abstract
Adipogenesis is tightly regulated by altering gene expression, and TNF-α is a multifunctional cytokine that plays an important role in regulating lipogenesis. MicroRNAs are strong post-transcriptional regulators of cell differentiation. In our previous work, we found high expression of miR-181a in a fat-rich pig breed. Using bioinformatic analysis, miR-181a was identified as a potential regulator of TNF-α. Here, we validated TNF-α as the target of miR-181a by a dual luciferase assay. In response to adipogenesis, a mimic or inhibitor was used to overexpress or reduce miR-181a expression in porcine pre-adipocytes, which were then induced into mature adipocytes. Overexpression of miR-181a accelerated accumulation of lipid droplets, increased the amount of triglycerides, and repressed TNF-α protein expression, while the inhibitor had the opposite effect. At the same time, TNF-alpha rescued the increased lipogenesis by miR181a mimics. Additionally, miR-181a suppression decreased the expression of fatty synthesis associated genes PDE3B (phosphodiesterase 3B), LPL (lipoprotein lipase), PPARγ (proliferator-activated receptor-γ), GLUT1(glucose transporter), GLUT4, adiponectin and FASN (fatty acid synthase), as well as key lipolytic genes HSL (hormone-sensitive lipase) and ATGL (adipose triglyceride lipase) as revealed by quantitative real-time PCR. Our study provides the first evidence of the role of miR-181a in adipocyte differentiation by regulation of TNF-α, which may became a new therapeutic target for anti-obesity drugs.
Collapse
Affiliation(s)
- Hongyi Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, ALLTECH-SCAU Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, China ; Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, College of Life Science, Longyan University, Fujian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cardiovascular diseases in children comprise a large public health problem. The major goals of paediatric cardiologists and paediatric cardiovascular researchers are to identify the cause(s) of these diseases to improve treatment and preventive protocols. Recent studies show the involvement of microRNAs (miRs) in different aspects of heart development, function, and disease. Therefore, miR-based research in paediatric cardiovascular disorders is crucial for a better understanding of the underlying pathogenesis of the disease, and unravelling novel, efficient, preventive, and therapeutic means. The ultimate goal of such research is to secure normal cardiac development and hence decrease disabilities, improve clinical outcomes, and decrease the morbidity and mortality among children. This review focuses on the role of miRs in different paediatric cardiovascular conditions in an effort to encourage miR-based research in paediatric cardiovascular disorders.
Collapse
|
41
|
Qin L, Chen Y, Liu X, Ye S, Yu K, Huang Z, Yu J, Zhou X, Chen H, Mo D. Integrative analysis of porcine microRNAome during skeletal muscle development. PLoS One 2013; 8:e72418. [PMID: 24039761 PMCID: PMC3770649 DOI: 10.1371/journal.pone.0072418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development.
Collapse
Affiliation(s)
- Lijun Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Sanxing Ye
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Kaifan Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zheng Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jingwei Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xingyu Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
42
|
Ling H, Li X, Yao CH, Hu B, Liao D, Feng S, Wen G, Zhang L. The physiological and pathophysiological roles of adipocyte miRNAs. Biochem Cell Biol 2013; 91:195-202. [PMID: 23859012 DOI: 10.1139/bcb-2012-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
MicroRNAs (miRNAs) are highly conserved, small, noncoding RNAs that regulate gene expression at the posttranscriptional level. Their actions affect numerous important biological processes, including adipocyte differentiation and function, sugar and lipid metabolism, and insulin production and secretion. Recent reports suggest miRNAs may also be involved in the pathogenic processes of obesity, diabetes, and insulin resistance. In this review, we summarize research progresses on adipocyte miRNAs and their physiological and pathological implications.
Collapse
Affiliation(s)
- Hongyan Ling
- Department of Physiology, School of Medicine, University of South China, Hengyang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 2013; 14:11190-207. [PMID: 23712358 PMCID: PMC3709727 DOI: 10.3390/ijms140611190] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/25/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs), a group of small non-coding RNAs that fine tune translation of multiple target mRNAs, are emerging as key regulators in cardiovascular development and disease. MiRNAs are involved in cardiac hypertrophy, heart failure and remodeling following cardiac infarction; however, miRNAs involved in hypertension have not been thoroughly investigated. We have recently reported that specific miRNAs play an integral role in Angiotensin II receptor (AT1R) signaling, especially after activation of the Gαq signaling pathway. Since AT1R blockers are widely used to treat hypertension, we undertook a detailed analysis of potential miRNAs involved in Angiotensin II (AngII) mediated hypertension in rats and hypertensive patients, using miRNA microarray and qPCR analysis. The miR-132 and miR-212 are highly increased in the heart, aortic wall and kidney of rats with hypertension (159 ± 12 mm Hg) and cardiac hypertrophy following chronic AngII infusion. In addition, activation of the endothelin receptor, another Gαq coupled receptor, also increased miR-132 and miR-212. We sought to extend these observations using human samples by reasoning that AT1R blockers may decrease miR-132 and miR-212. We analyzed tissue samples of mammary artery obtained from surplus arterial tissue after coronary bypass operations. Indeed, we found a decrease in expression levels of miR-132 and miR-212 in human arteries from bypass-operated patients treated with AT1R blockers, whereas treatment with β-blockers had no effect. Taken together, these data suggest that miR-132 and miR-212 are involved in AngII induced hypertension, providing a new perspective in hypertensive disease mechanisms.
Collapse
|
44
|
Peng Y, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang S. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 2013; 45:1585-93. [PMID: 23665235 DOI: 10.1016/j.biocel.2013.04.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
MicroRNAs (miRNAs) are small ~22 nucleotide regulatory RNAs that regulate the stability and translation of cognate messenger RNAs (mRNAs). MicroRNAs participate in the regulation of adipogenesis and identification of the full repertoire of MicroRNAs expressed in adipose tissue is likely to improve our understanding of adipose tissue growth and development significantly. In the present study, it is found that miR-224-5p abundance decreases first and then increases during adipogenesis of 3T3-L1 cells. And early growth response 2 (EGR2) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) are direct targets of miR-224-5p. Further studies in mouse 3T3-L1 cell-line shows that miR-224-5p is a novel negative regulator of adipocyte differentiation through post-transcriptional regulation of early growth response 2 during early adipogenesis. Furthermore, miR-224-5p could regulate fatty acid metabolism through Acyl-CoA synthetase long-chain family member 4 at terminal differentiation. It indicates that miR-224 plays different roles on different stages of adipogenesis.
Collapse
Affiliation(s)
- Yongdong Peng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Horse serum reduces expression of membrane-bound and soluble isoforms of the preadipocyte marker Delta-like 1 homolog (Dlk1), but is inefficient for adipogenic differentiation of mouse preadipocytes. Acta Histochem 2013; 115:401-6. [PMID: 22975115 DOI: 10.1016/j.acthis.2012.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/18/2012] [Accepted: 08/19/2012] [Indexed: 11/24/2022]
Abstract
Downregulation of the preadipocyte marker Delta-like 1 homologue (Dlk1), an inhibitor of adipogenesis, has been suggested to be a prerequisite for adipogenic differentiation to occur, and low Dlk1 levels are often used to verify adipogenesis. Mouse preadipocytic cell lines such as 3T3-L1, as well as primary derived preadipocytes, are important models to study adipogenic differentiation and obesity. However, in vitro adipogenic differentiation of primary derived preadipocytes remains incomplete, and identification of factors that will improve the adipogenic differentiation process is thus of high value. In this study we show that horse serum fails to improve adipogenic differentiation of mouse preadipocytes (both 3T3-L1 cells and primary derived mouse preadipocytes) as otherwise reported for bone marrow derived adipogenic precursors. Unexpectedly, while Dlk1 levels were indeed decreased using horse serum, this did not correlate with a high degree of adipogenic differentiation. In conclusion, our novel results thus reveal that horse serum clearly is insufficient for adipogenic differentiation of mouse preadipocytes and that low levels of Dlk1 alone are a poor marker of mouse in vitro adipogenesis. We would also like to emphasize that it is very important for the field of cellular differentiation that researchers thoroughly investigate the effect of individual reagents in their protocols. Such data will increase understanding of the limitations and possibilities of individual systems.
Collapse
|
46
|
MicroRNA transcriptomes relate intermuscular adipose tissue to metabolic risk. Int J Mol Sci 2013; 14:8611-24. [PMID: 23609494 PMCID: PMC3645765 DOI: 10.3390/ijms14048611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 12/25/2022] Open
Abstract
Intermuscular adipose tissue is located between the muscle fiber bundles in skeletal muscles, and has similar metabolic features to visceral adipose tissue, which has been found to be related to a number of obesity-related diseases. Although various miRNAs are known to play crucial roles in adipose deposition and adipogenesis, the microRNA transcriptome of intermuscular adipose tissue has not, until now, been studied. Here, we sequenced the miRNA transcriptomes of porcine intermuscular adipose tissue by small RNA-sequencing and compared it to a representative subcutaneous adipose tissue. We found that the inflammation- and diabetes-related miRNAs were significantly enriched in the intermuscular rather than in the subcutaneous adipose tissue. A functional enrichment analysis of the genes predicted to be targeted by the enriched miRNAs also indicated that intermuscular adipose tissue was associated mainly with immune and inflammation responses. Our results suggest that the intermuscular adipose tissue should be recognized as a potential metabolic risk factor of obesity.
Collapse
|
47
|
Mortensen SB, Jensen CH, Schneider M, Thomassen M, Kruse TA, Laborda J, Sheikh SP, Andersen DC. Membrane-tethered delta-like 1 homolog (DLK1) restricts adipose tissue size by inhibiting preadipocyte proliferation. Diabetes 2012; 61:2814-22. [PMID: 22891218 PMCID: PMC3478550 DOI: 10.2337/db12-0176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adipocyte renewal from preadipocytes has been shown to occur throughout life and to contribute to obesity, yet very little is known about the molecular circuits that control preadipocyte expansion. The soluble form of the preadipocyte factor (also known as pref-1) delta-like 1 homolog (DLK1(S)) is known to inhibit adipogenic differentiation; however, the impact of DLK1 isoforms on preadipocyte proliferation remains to be determined. We generated preadipocytes with different levels of DLK1 and examined differentially affected gene pathways, which were functionally tested in vitro and confirmed in vivo. Here, we demonstrate for the first time that only membrane-bound DLK1 (DLK1(M)) exhibits a substantial repression effect on preadipocyte proliferation. Thus, by independently manipulating DLK1 isoform levels, we established that DLK1(M) inhibits G1-to-S-phase cell cycle progression and thereby strongly inhibits preadipocyte proliferation in vitro. Adult DLK1-null mice exhibit higher fat amounts than wild-type controls, and our in vivo analysis demonstrates that this may be explained by a marked increase in preadipocyte replication. Together, these data imply a major dual inhibitory function of DLK1 on adipogenesis, which places DLK1 as a master regulator of preadipocyte homeostasis, suggesting that DLK1 manipulation may open new avenues in obesity treatment.
Collapse
Affiliation(s)
- Sussi B. Mortensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Charlotte H. Jensen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mikael Schneider
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics and Human Microarray Centre, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics and Human Microarray Centre, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | - Jorge Laborda
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Søren P. Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Corresponding authors: Søren P. Sheikh, , and Ditte C. Andersen,
| | - Ditte C. Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, and Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Corresponding authors: Søren P. Sheikh, , and Ditte C. Andersen,
| |
Collapse
|
48
|
miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun Rev 2012; 11:636-41. [DOI: 10.1016/j.autrev.2011.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/05/2011] [Indexed: 12/21/2022]
|
49
|
Abstract
Diabetes is a chronic disease that manifests when insulin production by the pancreas is insufficient or when the body cannot effectively utilize the secreted insulin. The onset of diabetes often goes undetected until the later stages where subsequent glucose accumulation in the system (hyperglycemia) is observed. Over time, it leads to serious multi-organ damage, especially to the nerves and blood vessels. The WHO reports that approximately 346 million people worldwide are diagnosed with diabetes. With no cure available, long-term medical care for diabetes has become a global economic challenge globally. Hence, there is a need to explore novel early biomarkers and therapeutics for diabetes. One such potential molecule is the miRNAs. miRNAs are endogenous, noncoding RNAs that predominantly inhibit gene expression. Compelling evidence showed that altered miRNA expressions are linked to pathological conditions, including diabetes manifestation. This review focuses on the implications of miRNAs in diabetes and their related complications.
Collapse
Affiliation(s)
- Dwi Setyowati Karolina
- a Department of Biochemistry, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Arunmozhiarasi Armugam
- a Department of Biochemistry, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Sugunavathi Sepramaniam
- a Department of Biochemistry, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Kandiah Jeyaseelan
- b Department of Biochemistry, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
50
|
Jeppesen PL, Christensen GL, Schneider M, Nossent AY, Jensen HB, Andersen DC, Eskildsen T, Gammeltoft S, Hansen JL, Sheikh SP. Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes. Br J Pharmacol 2012; 164:394-404. [PMID: 21449976 DOI: 10.1111/j.1476-5381.2011.01375.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The angiotensin II type 1 receptor (AT(1)R) is a key regulator of blood pressure and cardiac contractility and is profoundly involved in development of cardiac disease. Since several microRNAs (miRNAs) have been implicated in cardiac disease, we determined whether miRNAs might be regulated by AT(1)R signals in a Gαq/11-dependent or -independent manner. EXPERIMENTAL APPROACH We performed a global miRNA array analysis of angiotensin II (Ang II)-mediated miRNA regulation in HEK293N cells overexpressing the AT(1)R and focused on separating the role of Gαq/11-dependent and -independent pathways. MiRNA regulation was verified with quantitative PCR in both HEK293N cells and primary cardiac myocytes and fibroblasts. KEY RESULTS Our studies revealed five miRNAs (miR-29b, -129-3p, -132, -132* and -212) that were up-regulated by Ang II in HEK293N cells. In contrast, the biased Ang II analogue, [Sar1, Ile4, Ile8] Ang II (SII Ang II), which selectively activates Gαq/11-independent signalling, failed to regulate miRNAs in HEK293N cells. Furthermore, Ang II-induced miRNA regulation was blocked following Gαq/11 and Mek1 inhibition. The observed Ang II regulation of miRNA was confirmed in primary cultures of adult cardiac fibroblasts. Interestingly, Ang II did not regulate miRNA expression in cardiac myocytes, but SII Ang II significantly down-regulated miR-129-3p. CONCLUSIONS AND IMPLICATIONS Five miRNAs were regulated by Ang II through mechanisms depending on Gαq/11 and Erk1/2 activation. These miRNAs may be involved in Ang II-mediated cardiac biology and disease, as several of these miRNAs have previously been associated with cardiovascular disease and were found to be regulated in cardiac cells.
Collapse
Affiliation(s)
- Pia Lindgren Jeppesen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark and Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, Odense, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|