1
|
Hirst TC, Wilson E, Browne D, Sena ES. A machine learning-assisted systematic review of preclinical glioma modeling: Is practice changing with the times? Neurooncol Adv 2024; 6:vdae193. [PMID: 39734809 PMCID: PMC11680884 DOI: 10.1093/noajnl/vdae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024] Open
Abstract
Background Despite improvements in our understanding of glioblastoma pathophysiology, there have been no major improvements in treatment in recent years. Animal models are a vital tool for investigating cancer biology and its treatment, but have known limitations. There have been advances in glioblastoma modeling techniques in this century although it is unclear to what extent they have been adopted. Methods We searched Pubmed and EMBASE using terms designed to identify all publications reporting an animal glioma experiment, using a machine learning algorithm to assist with screening. We reviewed the full text of a sample of 1000 articles and then used the findings to inform a screen of all included abstracts to appraise the modeling applications across the entire dataset. Results The search identified 26 201 publications of which 13 783 were included at screening. The automated screening had high sensitivity but limited specificity. We observed a dominance of traditional cell line paradigms and the emergence of advanced tumor model systems eclipsed by a large increase in the volume of cell line experiments. Few studies used more than 1 model in vivo and most publications did not verify critical genetic features. Conclusions Advanced models have clear advantages in terms of tumor and disease recapitulation and have largely not replaced traditional cell lines which have a number of critical deficiencies that limit their viability in modern animal research. The judicious use of advanced models or more relevant cell lines might improve the translational relevance of future animal glioblastoma experimentation.
Collapse
Affiliation(s)
- Theodore C Hirst
- Department of Neurosurgery, Royal Victoria Hospital, Belfast, UK
- Patrick G Johnson Centre for Cancer Research, Queens University Belfast, Belfast, UK
| | - Emma Wilson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Declan Browne
- Department of Neurosurgery, Royal Victoria Hospital, Belfast, UK
| | - Emily S Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Defective Regulation of Membrane TNFα Expression in Dendritic Cells of Glioblastoma Patients Leads to the Impairment of Cytotoxic Activity against Autologous Tumor Cells. Int J Mol Sci 2020; 21:ijms21082898. [PMID: 32326230 PMCID: PMC7215742 DOI: 10.3390/ijms21082898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Besides an antigen-presenting function and ability to induce antitumor immune responses, dendritic cells (DCs) possess a direct tumoricidal activity. We previously reported that monocyte-derived IFNα-induced DCs (IFN-DCs) of glioblastoma multiforme patients express low levels of membrane TNFα molecule (mTNFα) and have impaired TNFα/TNF-R1-mediated cytotoxicity against immortalized tumor cell line HEp-2. However, whether the observed defect could affect killer activity of glioma patient DCs against autologous tumor cells remained unclear. Here, we show that donor IFN-DCs possess cytotoxic activity against glioblastoma cell lines derived from a primary tumor culture. Granule-mediated and TNFα/TNF-R1-dependent pathways were established as the main mechanisms underlying cytotoxic activity of IFN-DCs. Glioblastoma patient IFN-DCs showed lower cytotoxicity against autologous glioblastoma cells sensitive to TNFα/TNFR1-mediated lysis, which was associated with low TNFα mRNA expression and high TACE/ADAM-17 enzyme activity. Recombinant IL-2 (rIL-2) and human double-stranded DNA (dsDNA) increased 1.5-fold cytotoxic activity of patient IFN-DCs against autologous glioblastoma cells. dsDNA, but not rIL-2, enhanced the expression of TNFα mRNA and decreased expression and activity of TACE/ADAM-17 enzyme. In addition, dsDNA and rIL-2 stimulated the expression of perforin and granzyme B (in the presence of dsDNA), suggesting the possibility of enhancing DC cytotoxicity against autologous glioblastoma cells via various mechanisms.
Collapse
|
3
|
Autelitano F, Loyaux D, Roudières S, Déon C, Guette F, Fabre P, Ping Q, Wang S, Auvergne R, Badarinarayana V, Smith M, Guillemot JC, Goldman SA, Natesan S, Ferrara P, August P. Identification of novel tumor-associated cell surface sialoglycoproteins in human glioblastoma tumors using quantitative proteomics. PLoS One 2014; 9:e110316. [PMID: 25360666 PMCID: PMC4216004 DOI: 10.1371/journal.pone.0110316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.
Collapse
Affiliation(s)
- François Autelitano
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
- * E-mail:
| | - Denis Loyaux
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Sébastien Roudières
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Catherine Déon
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Frédérique Guette
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Philippe Fabre
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Qinggong Ping
- ALS Therapy Development Institute, Cambridge, Massachusetts, United States of America
| | - Su Wang
- Department of Neurology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Romane Auvergne
- Department of Neurology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | | | - Michael Smith
- Sanofi Tucson Research Center, Oro Valley, Arizona, United States of America
| | | | - Steven A. Goldman
- Department of Neurology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | | | - Pascual Ferrara
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, Toulouse, France
| | - Paul August
- Sanofi Tucson Research Center, Oro Valley, Arizona, United States of America
| |
Collapse
|
4
|
Xu Y, Hu H, Zheng J, Li B. Feasibility of whole RNA sequencing from single-cell mRNA amplification. GENETICS RESEARCH INTERNATIONAL 2013; 2013:724124. [PMID: 24455282 PMCID: PMC3885331 DOI: 10.1155/2013/724124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/17/2013] [Accepted: 11/13/2013] [Indexed: 11/17/2022]
Abstract
Single-cell sampling with RNA-seq analysis plays an important role in reference laboratory; cytogenomic diagnosis for specimens on glass-slides or rare cells in circulating blood for tumor and genetic diseases; measurement of sensitivity and specificity in tumor-tissue genomic analysis with mixed-cells; mechanism analysis of differentiation and proliferation of cancer stem cell for academic purpose. Our single- cell RNA-seq technique shows that fragments were 250-450 bp after fragmentation, amplification, and adapter addition. There were 11.6 million reads mapped in raw sequencing reads (19.6 million). The numbers of mapped genes, mapped transcripts, and mapped exons were 31,332, 41,210, and 85,786, respectively. All QC results demonstrated that RNA-seq techniques could be used for single-cell genomic performance. Analysis of the mapped genes showed that the number of genes mapped by RNA-seq (6767 genes) was much higher than that of differential display (288 libraries) among similar specimens which we have developed and published. The single-cell RNA-seq can detect gene splicing using different subtype TGF-beta analysis. The results from using Q-rtPCR tests demonstrated that sensitivity is 76% and specificity is 55% from single-cell RNA-seq technique with some gene expression missing (2/8 genes). However, it will be feasible to use RNA-seq techniques to contribute to genomic medicine at single-cell level.
Collapse
Affiliation(s)
- Yunbo Xu
- Department of Computer Science, MCG, Augusta, GA 30912, USA
| | - Hongliang Hu
- Renji Hospital of Shanghai, Jiaotong University School of Medicine, Shanghai, China
| | - Jie Zheng
- School of Computer Engineering, Nanyang Technological University, Singapore 639798
| | - Biaoru Li
- Department of Pediatrics, MCG, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Clarkson C, Herrero-Turrión MJ, Merchán MA. Cortical Auditory Deafferentation Induces Long-Term Plasticity in the Inferior Colliculus of Adult Rats: Microarray and qPCR Analysis. Front Neural Circuits 2012; 6:86. [PMID: 23233834 PMCID: PMC3516126 DOI: 10.3389/fncir.2012.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022] Open
Abstract
The cortico-collicular pathway is a bilateral excitatory projection from the cortex to the inferior colliculus (IC). It is asymmetric and predominantly ipsilateral. Using microarrays and RT-qPCR we analyzed changes in gene expression in the IC after unilateral lesions of the auditory cortex, comparing the ICs ipsi- and contralateral to the lesioned side. At 15 days after surgery there were mainly changes in gene expression in the IC ipsilateral to the lesion. Regulation primarily involved inflammatory cascade genes, suggesting a direct effect of degeneration rather than a neuronal plastic reorganization. Ninety days after the cortical lesion the ipsilateral IC showed a significant up-regulation of genes involved in apoptosis and axonal regeneration combined with a down-regulation of genes involved in neurotransmission, synaptic growth, and gap junction assembly. In contrast, the contralateral IC at 90 days post-lesion showed an up-regulation in genes primarily related to neurotransmission, cell proliferation, and synaptic growth. There was also a down-regulation in autophagy and neuroprotection genes. These findings suggest that the reorganization in the IC after descending pathway deafferentation is a long-term process involving extensive changes in gene expression regulation. Regulated genes are involved in many different neuronal functions, and the number and gene rearrangement profile seems to depend on the density of loss of the auditory cortical inputs.
Collapse
Affiliation(s)
- Cheryl Clarkson
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca Salamanca, Spain
| | | | | |
Collapse
|