1
|
Shameem M, Olson SL, Marron Fernandez de Velasco E, Kumar A, Singh BN. Cardiac Fibroblasts: Helping or Hurting. Genes (Basel) 2025; 16:381. [PMID: 40282342 PMCID: PMC12026832 DOI: 10.3390/genes16040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Cardiac fibroblasts (CFs) are the essential cell type for heart morphogenesis and homeostasis. In addition to maintaining the structural integrity of the heart tissue, muscle fibroblasts are involved in complex signaling cascades that regulate cardiomyocyte proliferation, migration, and maturation. While CFs serve as the primary source of extracellular matrix proteins (ECM), tissue repair, and paracrine signaling, they are also responsible for adverse pathological changes associated with cardiovascular disease. Following activation, fibroblasts produce excessive ECM components that ultimately lead to fibrosis and cardiac dysfunction. Decades of research have led to a much deeper understanding of the role of CFs in cardiogenesis. Recent studies using the single-cell genomic approach have focused on advancing the role of CFs in cellular interactions, and the mechanistic implications involved during cardiovascular development and disease. Arguably, the unique role of fibroblasts in development, tissue repair, and disease progression categorizes them into the friend or foe category. This brief review summarizes the current understanding of cardiac fibroblast biology and discusses the key findings in the context of development and pathophysiological conditions.
Collapse
Affiliation(s)
- Mohammad Shameem
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Shelby L. Olson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Akhilesh Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bhairab N. Singh
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Latchford LP, Perez LS, Conage-Pough JE, Turk R, Cusimano MA, Vargas VI, Arora S, Shienvold SR, Kulp RR, Belverio HM, White FM, Thévenin AF. Differential substrate specificity of ERK, JNK, and p38 MAP kinases toward connexin 43. J Biol Chem 2025; 301:108178. [PMID: 39798878 PMCID: PMC11870265 DOI: 10.1016/j.jbc.2025.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ∼140 amino acid-long C-terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators. Phosphorylation of these sites by JNK and p38, on the other hand, is not well-established. Indeed, ERK is a kinase activated by growth factors and is upregulated in diseases, such as cancer. JNK and p38, however, have a largely tumor-suppressive function due to their stress-activated and apoptotic role. We investigated substrate specificity of all three MAPKs toward Cx43CT, first by using purified proteins, and then in two cell lines (MDCK - non-cancerous, epithelial cells and porcine PAECs-pulmonary artery endothelial cells). Cx43 phosphorylation was monitored through gel-shift assays on an SDS-PAGE, immunodetection with phospho-Cx43 antibodies, and LC-MS/MS phosphoproteomic analyses. Our results demonstrate that p38 and JNK specificity differ from each other and from ERK. JNK has a strong preference for S255, S262, and S279, while p38 readily phosphorylates S262, S279, and S282. While we confirmed that ERK can phosphorylate all four serines (255, 262, 279, and 282), we also identified T290 as a novel ERK phosphorylation site. In addition, we assessed Cx43 GJ function upon activation or inhibition of each MAPK in PAECs. This work underscores the importance of delineating the effects of ERK, JNK, and p38 signaling on Cx43 and GJ function.
Collapse
Affiliation(s)
- Lauren P Latchford
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Liz S Perez
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Jason E Conage-Pough
- Koch Institute for Integrative Cancer Research and Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Reem Turk
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Marissa A Cusimano
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Victoria I Vargas
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Sonal Arora
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Sophia R Shienvold
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Ryan R Kulp
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Hailey M Belverio
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research and Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Anastasia F Thévenin
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
3
|
Latchford LP, Perez LS, Conage-Pough JE, Turk R, Cusimano MA, Vargas VI, Arora S, Shienvold SR, Kulp RR, Belverio HM, White FM, Thévenin AF. Differential substrate specificity of ERK, JNK, and p38 MAP kinases toward Connexin 43. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573692. [PMID: 38234737 PMCID: PMC10793482 DOI: 10.1101/2023.12.30.573692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ~140 amino acid-long C terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators. Phosphorylation of these sites by JNK and p38, on the other hand, is not well-established. Indeed, ERK is a kinase activated by growth factors and is upregulated in diseases, such as cancer. JNK and p38, however, have a largely tumor-suppressive function due to their stress-activated and apoptotic role. We investigated substrate specificity of all three MAPKs toward Cx43CT, first by using purified proteins, and then in two cell lines (MDCK: non-cancerous, epithelial cells and porcine PAECs: pulmonary artery endothelial cells). Cx43 phosphorylation was monitored through gel-shift assays on an SDS-PAGE, immunodetection with phospho-Cx43 antibodies, and LC-MS/MS phosphoproteomic analyses. Our results demonstrate that p38 and JNK specificity differ from each other and from ERK. JNK has a strong preference for S255, S262, and S279, while p38 readily phosphorylates S262, S279, and S282. While we confirmed that ERK can phosphorylate all four serines (255, 262, 279, and 282), we also identified T290 as a novel ERK phosphorylation site. In addition, we assessed Cx43 GJ function upon activation or inhibition of each MAPK in PAECs. This work underscores the importance of delineating the effects of ERK, JNK, and p38 signaling on Cx43 and GJ function.
Collapse
|
4
|
Yang J, Argenziano MA, Burgos Angulo M, Bertalovitz A, Beidokhti MN, McDonald TV. Phenotypic Variability in iPSC-Induced Cardiomyocytes and Cardiac Fibroblasts Carrying Diverse LMNA Mutations. Front Physiol 2021; 12:778982. [PMID: 34975533 PMCID: PMC8716763 DOI: 10.3389/fphys.2021.778982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Mutations in the LMNA gene (encoding lamin A/C) are a significant cause of familial arrhythmogenic cardiomyopathy. Although the penetrance is high, there is considerable phenotypic variability in disease onset, rate of progression, arrhythmias, and severity of myopathy. To begin to address whether this variability stems from specific LMNA mutation sites and types, we generated seven patient-specific induced pluripotent stem cell (iPSC) lines with various LMNA mutations. IPSC-derived cardiomyocytes (iCMs) and cardiac fibroblasts (iCFs) were differentiated from each line for phenotypic analyses. LMNA expression and extracellular signal-regulated kinase pathway activation were perturbed to differing degrees in both iCMs and iCFs from the different lines. Enhanced apoptosis was observed in iCMs but not in iCFs. Markedly diverse irregularities of nuclear membrane morphology were present in iCFs but not iCMs, while iCMs demonstrated variable sarcomere disarray. Heterogenous electrophysiological aberrations assayed by calcium indicator imaging and multi-electrode array suggest differing substrates for arrhythmia that were accompanied by variable ion channel gene expression in the iCMs. Coculture studies suggest enhancement of the LMNA mutation effects on electrophysiological function exerted by iCFs. This study supports the utility of patient-specific iPSC experimental platform in the exploration of mechanistic and phenotypic heterogeneity of different mutations within a cardiac disease-associated gene. The addition of genetically defined coculture of cardiac-constituent non-myocytes further expands the capabilities of this approach.
Collapse
Affiliation(s)
- Jiajia Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mariana A. Argenziano
- Heart Institute, Department of Medicine (Division of Cardiovascular Sciences), Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mariana Burgos Angulo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Alexander Bertalovitz
- Heart Institute, Department of Medicine (Division of Cardiovascular Sciences), Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maliheh Najari Beidokhti
- Heart Institute, Department of Medicine (Division of Cardiovascular Sciences), Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Thomas V. McDonald
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Heart Institute, Department of Medicine (Division of Cardiovascular Sciences), Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Thomas V. McDonald,
| |
Collapse
|
5
|
Preclinical Advances of Therapies for Laminopathies. J Clin Med 2021; 10:jcm10214834. [PMID: 34768351 PMCID: PMC8584472 DOI: 10.3390/jcm10214834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Laminopathies are a group of rare disorders due to mutation in LMNA gene. Depending on the mutation, they may affect striated muscles, adipose tissues, nerves or are multisystemic with various accelerated ageing syndromes. Although the diverse pathomechanisms responsible for laminopathies are not fully understood, several therapeutic approaches have been evaluated in patient cells or animal models, ranging from gene therapies to cell and drug therapies. This review is focused on these therapies with a strong focus on striated muscle laminopathies and premature ageing syndromes.
Collapse
|
6
|
Ross JA, Stroud MJ. THE NUCLEUS: Mechanosensing in cardiac disease. Int J Biochem Cell Biol 2021; 137:106035. [PMID: 34242685 DOI: 10.1016/j.biocel.2021.106035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
The nucleus provides a physical and selective chemical boundary to segregate the genome from the cytoplasm. The contents of the nucleus are surrounded by the nuclear envelope, which acts as a hub of mechanosensation, transducing forces from the external cytoskeleton to the nucleus, thus impacting on nuclear morphology, genome organisation, gene transcription and signalling pathways. Muscle tissues such as the heart are unique in that they actively generate large contractile forces, resulting in a distinctive mechanical environment which impacts nuclear properties, function and mechanosensing. In light of this, mutations that affect the function of the nuclear envelope (collectively known as nuclear envelopathies and laminopathies) disproportionately result in striated muscle diseases, which include dilated and arrhythmogenic cardiomyopathies. Here we review the nucleus and its role in mechanotransduction, as well as associated defects that lead to cardiac dysfunction.
Collapse
Affiliation(s)
- Jacob A Ross
- British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Matthew J Stroud
- British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK.
| |
Collapse
|
7
|
Sun Z, Yang Y, Wu L, Talabieke S, You H, Zheng Y, Luo D. Connexin 43-serine 282 modulates serine 279 phosphorylation in cardiomyocytes. Biochem Biophys Res Commun 2019; 513:567-572. [PMID: 30981509 DOI: 10.1016/j.bbrc.2019.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
Connexin 43 (Cx43) phosphorylation plays a pivotal role in cardiac electrical and contractile performance. In a previous study we have found that Cx43 phosphorylation at serine 282 (pS282) regulates cardiomyocyte survival. Considering that both sites are altered simultaneously in many studies, we designed this study to identify the status of S279 phosphorylation upon pS282 manipulation. In heterozygous mice with S282 gene substituted with alanine (S282A), we found ventricular arrhythmias with inhibition of Cx43 phosphorylation at both S282 and S279 in the hearts. In cultured neonatal rat ventricular myocytes (NRVMs), transfection of virus carrying S282A mutant also blocked Cx43 phosphorylation at both S279/282 and gap junction coupling, while expression of wild-type Cx43 or S279A did not. Further, NRVMs transfected with S282 phospho-mimicking mutant substituted with aspartate or treated with ATP exhibited promotions of Cx43 phosphorylation at S279/282 and intercellular communication. Therefore, this study demonstrated a regulatory role of Cx43-S282 on S279 phosphorylation in cardiomyocytes, and suggested an involvement of S279 in the Cx43-S282 mediated cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Zhipeng Sun
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yutong Yang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Lulin Wu
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Shaletanati Talabieke
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Hongjie You
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Dali Luo
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
8
|
Gerbino A, Procino G, Svelto M, Carmosino M. Role of Lamin A/C Gene Mutations in the Signaling Defects Leading to Cardiomyopathies. Front Physiol 2018; 9:1356. [PMID: 30319452 PMCID: PMC6167438 DOI: 10.3389/fphys.2018.01356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023] Open
Abstract
Nuclear lamin A/C are crucial components of the intricate protein mesh that underlies the inner nuclear membrane and confers mainly nuclear and cytosolic rigidity. However, throughout the years a number of other key physiological processes have been associated with lamins such as modulation of both genes expression and the activity of signaling mediators. To further solidify its importance in cell physiology, mutations in the lamin A/C gene (LMNA) have been associated to diverse pathological phenotypes with skeletal muscles and the heart being the most affected systems. When affected, the heart develops a wide array of phenotypes spanning from dilated cardiomyopathy with conduction defects to arrhythmogenic right ventricular cardiomyopathy. The surprising large number of cardiac phenotypes reflects the equally large number of specific mutations identified in the LMNA gene. In this review, we underlie how mutations in LMNA can impact the activity and the spatial/temporal organization of signaling mediators and transcription factors. We analyzed the ever-increasing amount of findings collected in LmnaH222P/H222P mice whose cardiomyopathy resemble the most important features of the disease in humans and a number of key evidences from other experimental models. With this mini review, we attempt to combine the newest insights regarding both the pathogenic effects of LMNA mutations in terms of signaling abnormalities and cardiac laminopathies.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
9
|
Peretto G, Sala S, Benedetti S, Di Resta C, Gigli L, Ferrari M, Della Bella P. Updated clinical overview on cardiac laminopathies: an electrical and mechanical disease. Nucleus 2018; 9:380-391. [PMID: 29929425 PMCID: PMC7000139 DOI: 10.1080/19491034.2018.1489195] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiac laminopathies, associated with mutations in the LMNA gene, encompass a wide spectrum of clinical manifestations, involving electrical and mechanical alterations of cardiomyocytes. Thus, dilated cardiomyopathy, bradyarrhythmias and atrial or ventricular tachyarrhythmias may occur in a number of combined phenotypes. Nowadays, some attempt has been made to identify clinical predictors for the most life-threatening complications of LMNA-associated heart disease, i.e. sudden cardiac death and end-stage heart failure. The goal of this manuscript is to combine the most recent evidences in an updated review to show the state-of-the-art of such a complex disease group. This is supposed to be the starting point to collect more data and design new ad hoc studies to identify clinically useful predictors to stratify risk in mutation carriers, including probands and their asymptomatic relatives.
Collapse
Affiliation(s)
- G. Peretto
- Department of Cardiac Electrophysyology and Arrhythmology, IRCCS San Raffaele Hospital and University, Milan, Italy
| | - S. Sala
- Department of Cardiac Electrophysyology and Arrhythmology, IRCCS San Raffaele Hospital and University, Milan, Italy
| | - S. Benedetti
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital and University, Milan, Italy
| | - C. Di Resta
- Genomic Unit for the diagnosis of human pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital and University, Milan, Italy
| | - L. Gigli
- Department of Cardiac Electrophysyology and Arrhythmology, IRCCS San Raffaele Hospital and University, Milan, Italy
| | - M. Ferrari
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital and University, Milan, Italy
- Genomic Unit for the diagnosis of human pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital and University, Milan, Italy
| | - P. Della Bella
- Department of Cardiac Electrophysyology and Arrhythmology, IRCCS San Raffaele Hospital and University, Milan, Italy
| |
Collapse
|
10
|
Abstract
The nuclear lamina is a critical structural domain for the maintenance of genomic stability and whole-cell mechanics. Mutations in the LMNA gene, which encodes nuclear A-type lamins lead to the disruption of these key cellular functions, resulting in a number of devastating diseases known as laminopathies. Cardiomyopathy is a common laminopathy and is highly penetrant with poor prognosis. To date, cell mechanical instability and dysregulation of gene expression have been proposed as the main mechanisms driving cardiac dysfunction, and indeed discoveries in these areas have provided some promising leads in terms of therapeutics. However, important questions remain unanswered regarding the role of lamin A dysfunction in the heart, including a potential role for the toxicity of lamin A precursors in LMNA cardiomyopathy, which has yet to be rigorously investigated.
Collapse
Affiliation(s)
- Daniel Brayson
- a King's College London, The James Black Centre , London , United Kingdom
| | | |
Collapse
|
11
|
Wang X, Zabell A, Koh W, Tang WHW. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:21. [PMID: 28299614 DOI: 10.1007/s11936-017-0520-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A major gene associated with DCM with cardiac conduction system disease is lamin A/C (LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear structure support, DNA repair, cell signaling pathway mediation, and chromatin organization. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy (EDMD) and, since then, has been found in association with a wide spectrum of diseases termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac effects like dysrhythmias, development of congestive heart failure, and potential need of a pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity for further investigation to better understand LMNA mutations, and potential treatment options ranging from clinical and therapeutic to cellular and molecular techniques.
Collapse
Affiliation(s)
- Xi Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Allyson Zabell
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Wonshill Koh
- Children's Hospital of Pittsburgh, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Wen Y, Li B. The conduction system and expressions of hyperpolarization-activated cyclic nucleotide-gated cation channel 4 and connexin43 expressions in the hearts of fetal day 13 mice. Biotech Histochem 2017; 92:86-91. [PMID: 28296544 DOI: 10.1080/10520295.2016.1255994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We investigated the development of the sinus node of the heart conduction system by localizing hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) and connexin43 (Cx43) in the hearts of fetal day 13 mice. Horizontal serial sections of day 13 whole fetuses were stained by hematoxylin and eosin and immunofluorescence to identify myocardial cells that express HCN4, hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) and Cx43. Expression levels of HCN4 and Cx43 were determined by quantitative RT-PCR in both fetal day 13 and adult mice. We found that both Cx43 and HCN4 expressions were located on the cell membranes in the hearts of fetal day 13 mice, but Cx43 was distributed throughout the myocardial cells. HCN4 expression was concentrated mainly in the left dorsal epicardium of the right atrium where Cx43 expression was low or absent. Quantitative RT-PCR demonstrated that HCN4 expression was significantly higher and HCN2 expression was significantly lower in fetal day 13 mice than in adults. We found no statistically significant difference in Cx43 expression between fetal day 13 mice and adults. HCN4 stained myocardial cells in the left dorsal epicardium of the right atrium are the origin of the sinus node and the remainder of the heart conduction system.
Collapse
Affiliation(s)
- Y Wen
- a Department of Histology and Embryology , College of Basic Medical Sciences
| | - B Li
- b Department of Sports Medicine, Shengjing Hospital , China Medical University , Shenyang , China
| |
Collapse
|
13
|
Lanzicher T, Martinelli V, Long CS, Del Favero G, Puzzi L, Borelli M, Mestroni L, Taylor MRG, Sbaizero O. AFM single-cell force spectroscopy links altered nuclear and cytoskeletal mechanics to defective cell adhesion in cardiac myocytes with a nuclear lamin mutation. Nucleus 2016; 6:394-407. [PMID: 26309016 DOI: 10.1080/19491034.2015.1084453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Previous investigations suggested that lamin A/C gene (LMNA) mutations, which cause a variety of human diseases including muscular dystrophies and cardiomyopathies, alter the nuclear mechanical properties. We hypothesized that biomechanical changes may extend beyond the nucleus.
Collapse
Affiliation(s)
- Thomas Lanzicher
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy
| | - Valentina Martinelli
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy.,b International Center for Genetic Engineering and Biotechnology ; Trieste Italy
| | - Carlin S Long
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Giorgia Del Favero
- d Department of Food Chemistry and Toxicology ; University of Vienna ; Waehringer Str. 38A-1090 Vienna Austria
| | - Luca Puzzi
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy
| | - Massimo Borelli
- e Department of Life Sciences ; University of Trieste ; Trieste Italy
| | - Luisa Mestroni
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Matthew R G Taylor
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Orfeo Sbaizero
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy.,c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| |
Collapse
|
14
|
Schulz R, Görge PM, Görbe A, Ferdinandy P, Lampe PD, Leybaert L. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther 2015; 153:90-106. [PMID: 26073311 DOI: 10.1016/j.pharmthera.2015.06.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
Connexins are widely distributed proteins in the body that are crucially important for heart and brain functions. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localization at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in the mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodeling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injuries as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissues following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection.
Collapse
Affiliation(s)
- Rainer Schulz
- Institut für Physiologie, JustusLiebig Universität Giessen, Gießen, Germany.
| | | | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Luc Leybaert
- Physiology Group, Department Basic Medical Sciences, Ghent University, Belgium
| |
Collapse
|
15
|
Wang N, Sun LY, Zhang SC, Wei R, Xie F, Liu J, Yan Y, Duan MJ, Sun LL, Sun YH, Niu HF, Zhang R, Ai J. MicroRNA-23a participates in estrogen deficiency induced gap junction remodeling of rats by targeting GJA1. Int J Biol Sci 2015; 11:390-403. [PMID: 25798059 PMCID: PMC4366638 DOI: 10.7150/ijbs.10930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/21/2015] [Indexed: 01/07/2023] Open
Abstract
Increased incidence of arrhythmias in women after menopause has been widely documented, which is considered to be related to estrogen (E2) deficiency induced cardiac electrophysiological abnormalities. However, its molecular mechanism remains incompletely clear. In the present study, we found cardiac conduction blockage in post-menopausal rats. Thereafter, the results showed that cardiac gap junctions were impaired and Connexin43 (Cx43) expression was reduced in the myocardium of post-menopausal rats. The phenomenon was also observed in ovariectomized (OVX) rats, which was attenuated by E2 supplement. Further study displayed that microRNA-23a (miR-23a) level was significantly increased in both post-menopausal and OVX rats, which was reversed by daily E2 treatment after OVX. Importantly, forced overexpression of miR-23a led to gap junction impairment and Cx43 downregulation in cultured cardiomyocytes, which was rescued by suppressing miR-23a by transfection of miR-23a specific inhibitory oligonucleotide (AMO-23a). GJA1 was identified as the target gene of miR-23a by luciferase assay and miRNA-masking antisense ODN (miR-Mask) assay. We also found that E2 supplement could reverse cardiac conduction blockage, Cx43 downregulation, gap junction remodeling and miR-23a upregulation in post-menopausal rats. These findings provide the evidence that miR-23a mediated repression of Cx43 participates in estrogen deficiency induced damages of cardiac gap junction, and highlights a new insight into molecular mechanism of post-menopause related arrhythmia at the microRNA level.
Collapse
Affiliation(s)
- Ning Wang
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Lu-Yao Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Shou-Chen Zhang
- 3. Electron Microscopy Center, Harbin Medical University, Harbin, People's Republic of China, 150081
| | - Ran Wei
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Fang Xie
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081 ; 2. Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China, 150081
| | - Jing Liu
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Yan Yan
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Ming-Jing Duan
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Lin-Lin Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Ying-Hui Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Hui-Fang Niu
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Rong Zhang
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Jing Ai
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| |
Collapse
|
16
|
Shan H, Wei J, Zhang M, Lin L, Yan R, Zhang R, Zhu YH. Suppression of PKCε-mediated mitochondrial connexin 43 phosphorylation at serine 368 is involved in myocardial mitochondrial dysfunction in a rat model of dilated cardiomyopathy. Mol Med Rep 2015; 11:4720-6. [PMID: 25625661 DOI: 10.3892/mmr.2015.3260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 01/02/2015] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial connexin 43 (Cx43) is important in cardioprotection by ischemic preconditioning; however, whether mitochondrial Cx43 is involved in mitochondrial dysfunction in the pathogenesis of dilated cardiomyopathy (DCM) remains to be elucidated. The present study was performed to investigate the changes in expression and the phosphorylation state of mitochondrial Cx43 in a rat model of DCM, and to determine whether the altered phosphorylation state of mitochondrial Cx43 was involved in mitochondrial dysfunction. A rat model of DCM was generated by daily oral administration of furazolidone (FZD) for 30 weeks. Reverse transcription polymerase chain reaction and western blot analysis revealed a decrease in the overall expression of Cx43, accompanied by reduced levels of serine 368‑phosphorylated‑Cx43 immunoreactivity in the myocardium and myocardial mitochondria. In addition, the mitochondrial membrane potential and the activities of cytochrome c oxidase, succinate dehydrogenase and protein kinase C (PKC) ε were all significantly reduced compared with those of the control group. Phorbol‑12‑myristate‑13‑acetate (PMA), a specific PKC activator, partially reversed the FZD‑induced mitochondrial Cx43 dephosphorylation at serine 368 and mitochondrial dysfunction in the cardiomyocytes. However, pretreatment with 18β‑glycerrhetinic acid, a connexin channel inhibitor, eliminated the mitochondrial protective effect of PMA in the cardiomyocytes sparsely plated without cell to cell contact. These results suggested that dephosphorylation of mitochondrial Cx43 at serine 368, due to the suppression of PKCε activity, may be a novel mechanism for mitochondrial dysfunction in the pathogenesis of DCM.
Collapse
Affiliation(s)
- Hu Shan
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Lin Lin
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Rui Yan
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Rong Zhang
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yan-He Zhu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
17
|
Martin PE, Easton JA, Hodgins MB, Wright CS. Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 2014; 588:1304-14. [PMID: 24607543 DOI: 10.1016/j.febslet.2014.02.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022]
Abstract
Gap junction proteins (connexins) are differentially expressed throughout the multiple layers of the epidermis. A variety of skin conditions arise with aberrant connexin expression or function and suggest that maintaining the epidermal gap junction network has many important roles in preserving epidermal integrity and homeostasis. Mutations in a number of connexins lead to epidermal dysplasias giving rise to a range of dermatological disorders of differing severity. 'Gain of function' mutations reveal connexin-mediated roles in calcium signalling within the epidermis. Connexins are involved in epidermal innate immunity, inflammation control and in wound repair. The therapeutic potential of targeting connexins to improve wound healing responses is now clear. This review discusses the role of connexins in epidermal integrity, and examines the emerging evidence that connexins act as epidermal sensors to a variety of mechanical, temperature, pathogen-induced and chemical stimuli. Connexins thus act as an integral component of the skin's protective barrier.
Collapse
Affiliation(s)
- Patricia E Martin
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Jennifer A Easton
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK; Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Malcolm B Hodgins
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Catherine S Wright
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| |
Collapse
|
18
|
Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 2014; 588:1423-9. [PMID: 24508467 DOI: 10.1016/j.febslet.2014.01.049] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially "unzip" and be internalized/endocytosed into the cell that produced each connexin.
Collapse
Affiliation(s)
- Joell L Solan
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| |
Collapse
|
19
|
Oldenburg AR, Delbarre E, Thiede B, Vigouroux C, Collas P. Deregulation of Fragile X-related protein 1 by the lipodystrophic lamin A p.R482W mutation elicits a myogenic gene expression program in preadipocytes. Hum Mol Genet 2013; 23:1151-62. [PMID: 24108105 DOI: 10.1093/hmg/ddt509] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear lamina is implicated in the regulation of various nuclear functions. Several laminopathy-causing mutations in the LMNA gene, notably the p.R482W substitution linked to familial partial lipodystrophy type 2 (FPLD2), are clustered in the immunoglobulin fold of lamin A. We report a functional association between lamin A and fragile X-related protein 1 (FXR1P), a protein of the fragile X-related family involved in fragile X syndrome. Searching for proteins differentially interacting with the immunoglobulin fold of wild-type and R482W mutant lamin A, we identify FXR1P as a novel component of the lamin A protein network. The p.R482W mutation abrogates interaction of FXR1P with lamin A. Fibroblasts from FPLD2 patients display elevated levels of FXR1P and delocalized FXR1P. In human adipocyte progenitors, deregulation of lamin A expression leads to FXR1P up-regulation, impairment of adipogenic differentiation and induction of myogenin expression. FXR1P overexpression also stimulates a myogenic gene expression program in these cells. Our results demonstrate a cross-talk between proteins hitherto implicated in two distinct mesodermal pathologies. We propose a model where the FPLD2 lamin A p.R482W mutation elicits, through up-regulation of FXR1P, a remodeling of an adipogenic differentiation program into a myogenic program.
Collapse
Affiliation(s)
- Anja R Oldenburg
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences and Norwegian Center for Stem Cell Research, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, Oslo 0317, Norway
| | | | | | | | | |
Collapse
|
20
|
Sakurai T, Tsuchida M, Lampe PD, Murakami M. Cardiomyocyte FGF signaling is required for Cx43 phosphorylation and cardiac gap junction maintenance. Exp Cell Res 2013; 319:2152-65. [PMID: 23742896 DOI: 10.1016/j.yexcr.2013.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 02/06/2023]
Abstract
Cardiac remodeling resulting from impairment of myocardial integrity leads to heart failure, through still incompletely understood mechanisms. The fibroblast growth factor (FGF) system has been implicated in tissue maintenance, but its role in the adult heart is not well defined. We hypothesized that the FGF system plays a role in the maintenance of cardiac homeostasis, and the impairment of cardiomyocyte FGF signaling leads to pathological cardiac remodeling. We showed that FGF signaling is required for connexin 43 (Cx43) localization at cell-cell contacts in isolated cardiomyocytes and COS7 cells. Lack of FGF signaling led to decreased Cx43 phosphorylation at serines 325/328/330 (S325/328/330), sites known to be important for assembly of gap junctions. Cx43 instability induced by FGF inhibition was restored by the Cx43 S325/328/330 phospho-mimetic mutant, suggesting FGF-dependent phosphorylation of these sites. Consistent with these in vitro findings, cardiomyocyte-specific inhibition of FGF signaling in adult mice demonstrated mislocalization of Cx43 at intercalated discs, whereas localization of N-cadherin and desmoplakin was not affected. This led to premature death resulting from impaired cardiac remodeling. We conclude that cardiomyocyte FGF signaling is essential for cardiomyocyte homeostasis through phosphorylation of Cx43 at S325/328/330 residues which are important for the maintenance of gap junction.
Collapse
Affiliation(s)
- Takashi Sakurai
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
21
|
Schreiber KH, Kennedy BK. When lamins go bad: nuclear structure and disease. Cell 2013; 152:1365-75. [PMID: 23498943 DOI: 10.1016/j.cell.2013.02.015] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 12/17/2022]
Abstract
Mutations in nuclear lamins or other proteins of the nuclear envelope are the root cause of a group of phenotypically diverse genetic disorders known as laminopathies, which have symptoms that range from muscular dystrophy to neuropathy to premature aging syndromes. Although precise disease mechanisms remain unclear, there has been substantial progress in our understanding of not only laminopathies, but also the biological roles of nuclear structure. Nuclear envelope dysfunction is associated with altered nuclear activity, impaired structural dynamics, and aberrant cell signaling. Building on these findings, small molecules are being discovered that may become effective therapeutic agents.
Collapse
|