1
|
Moaeen-ud-Din M, Khan MS, Muner RD, Reecy JM. Potential SNPs and candidate genes influencing growth characteristics in Pakistani Beetal goat identified by GWAS analysis. THE JOURNAL OF BASIC AND APPLIED ZOOLOGY 2025; 86:18. [DOI: 10.1186/s41936-025-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/22/2025] [Indexed: 04/20/2025]
Abstract
Abstract
Background
A higher body weight at a younger age is an economically important trait for profitable goat farming. This study focussed on the identification of regions of the genome that harbour genetic variants associated with body weight using the Illumina GoatSNP50K Bead Chip. A total of 631 purebred Beetal goats (151 males and 480 females) were recorded for body weight, age and body measurement and then genotyped. Genome-wide association analysis was carried out with GEMMA.
Results
After application of quality control filters with Plink 1.9 i.e. call rate less than or equal to 0.9, minor allele frequency < 0.05 and HWE P value < 0.001, 594 animals and 45,744 SNPs were used to carry out the analyses for association. The association analysis for body weight with covariates of age, sex, morphometric measurements and contemporary group returned 10 significant SNPs (P = − log10e-4 to − log10e-6). Three associated SNPs were present within genes i.e. BTAF1 (snp1131-scaffold1029-1983670 on chromosome 26), NTM (snp53070-scaffold799-1,702,189 on chromosome 29) and GRID1 (snp3363-scaffold1102-797993 on chromosome 28) when blasted against ARS1(accession GCA_001704415.1). Moreover, some associated SNPs were localized close to genes i.e. CEP78 (snp44634-scaffold606-4621460 on chromosome 8), ROBO1 (snp11793-scaffold1437-557,127 on chromosome 1), ZFP36L2 (snp9758-scaffold135-2,388,277 on chromosome 11), SPTLC3 (snp25720-scaffold265-581,526 on chromosome 13), CTR9 (snp31951-scaffold358-554,703 on chromosome 15) and ZFHX3 (snp9581-scaffold1344-19,492 on chromosome 18) genes.
Conclusions
The study identified SNPs and genes with potential role in growth of goat which may be useful for generation of customized chip in the future.
Collapse
|
2
|
Hours CM, Gil S, Gressens P. Molecular and Cellular Insights: A Focus on Glycans and the HNK1 Epitope in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:15139. [PMID: 37894820 PMCID: PMC10606426 DOI: 10.3390/ijms242015139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal-fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system's implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology.
Collapse
Affiliation(s)
- Camille M Hours
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Service de Psychiatrie de l'Enfant et de l'Adolescent, APHP, Hôpital Robert Debré, 75019 Paris, France
| | - Sophie Gil
- INSERM 1144, Therapeutics in Neuropsychopharmacology, Université Paris Cité, 75019 Paris, France
| | - Pierre Gressens
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Neurologie Pédiatrique, APHP, Hôpital Robert Debré, 75019 Paris, France
| |
Collapse
|
3
|
Song Y, Lee D, Choi J, Lee JW, Hong K. Genome-wide association and replication studies for handedness in a Korean community-based cohort. Brain Behav 2023; 13:e3121. [PMID: 37337823 PMCID: PMC10498080 DOI: 10.1002/brb3.3121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Handedness is a conspicuous characteristic in human behavior, with a worldwide proportion of approximately 90% of people preferring to use the right hand for many tasks. In the Korean population, the proportion of left-handedness is relatively low at approximately 7%-10%, similar to that in other East-Asian cultures in which the use of the left hand for writing and other public activities has historically been oppressed. METHODS In this study, we conducted two genome-wide association studies (GWASs) between right-handedness and left-handedness, and between right-handedness and ambidexterity using logistic regression analyses using a Korean community-based cohort. We also performed association analyses with previously reported variants and our findings. RESULTS A total of 8806 participants were included for analysis, and the results identified 28 left-handedness-associated and 15 ambidexterity-associated loci; of these, two left-handedness loci (NEIL3 [rs11726465] and SVOPL [rs117495448]) and one ambidexterity locus (PDE8B/WDR41 [rs118077080]) showed near genome-wide significance. Association analyses with previously reported variants replicated ANKS1B (rs7132513) in left-handedness and ANKIB1 (rs2040498) in ambidexterity. CONCLUSION The variants and positional candidate genes identified and replicated in this study were largely associated with brain development, cerebral asymmetry, neurological processes, and neuropsychiatric diseases in line with previous findings. As the first East-Asian GWAS related to handedness, these results may provide an intriguing reference for further human neurologic research in the future.
Collapse
Affiliation(s)
- Youhyun Song
- Department of Family MedicineGangnam Severance HospitalYonsei University College of MedicineSeoulSouth Korea
- Healthcare Research Team, Health Promotion CenterGangnam Severance HospitalYonsei University College of MedicineSeoulSouth Korea
| | - Dasom Lee
- Theragen Bio Co. Ltd.Gyeonggi‐doSouth Korea
| | | | - Ji Won Lee
- Department of Family MedicineSeverance HospitalYonsei University College of MedicineSeoulSouth Korea
- Institute for Innovation in Digital HealthcareYonsei UniversitySeoulSouth Korea
| | | |
Collapse
|
4
|
Liu Z, Huang W, Zhu M, Xu Z, Xu Z, Yu C, Huang H. Mechanism of Robo1 in the pentylenetetrazol-kindled epilepsy mouse model. IBRAIN 2023; 9:369-380. [PMID: 38680506 PMCID: PMC11045194 DOI: 10.1002/ibra.12127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 04/28/2024]
Abstract
The neural network hypothesis is one of the important pathogenesis of drug-resistant epilepsy. Axons guide molecules through synaptic remodeling and brain tissue remodeling, which may result in the formation of abnormal neural networks. Therefore, axon guidance plays a crucial role in disease progression. However, although Robo1 is one of the important components of axon guidance, the role of Robo1 in epilepsy remains unclear. In this study, we aimed to explore the mechanism of Robo1 in epilepsy. Male adult C57BL/6 mice were intraperitoneally injected with pentylenetetrazol to establish an epilepsy model. Lentivirus (LV) was given via intracranial injection 2 weeks before pentylenetetrazol injection. Different expressions of Robo1 between the control group, LV-mediated Robo1 short hairpin RNA group, empty vector control LV group, and normal saline group were analyzed using Western blot, immunofluorescence staining, Golgi staining, and video monitoring. Robo1 was increased in the hippocampus in the pentylenetetrazol-induced epilepsy mouse model; lentiviral Robo1 knockdown prolonged the latency of seizure and reduced the seizure grade in mice and resulted in a decrease in dendritic spine density, while the number of mature dendritic spines was maintained. We speculate that Robo1 has been implicated in the development and progression of epilepsy through its effects on dendritic spine morphology and density. Epileptic mice with Robo1 knockdown virus intervention had lower seizure grade and longer latency. Follow-up findings suggest that Robo1 may modulate seizures by affecting dendritic spine density and morphology. Downregulation of Robo1 may negatively regulate epileptogenesis by decreasing the density of dendritic spines and maintaining a greater number of mature dendritic spines.
Collapse
Affiliation(s)
- Zheng Liu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Wei Huang
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Man‐Min Zhu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zhong‐Xiang Xu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zu‐Cai Xu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Chang‐Yin Yu
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hao Huang
- Department of NeurologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
5
|
Qiu X, Chen H, Feng D, Dong W. [G-protein coupled receptor Smo positively regulates proliferation and migration of adult neural stem cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1588-1592. [PMID: 34755677 DOI: 10.12122/j.issn.1673-4254.2021.10.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of G-protein coupled receptor Smoothened (Smo) in regulating proliferation and migration of adult neural stem cells (ANSCs) and explore the underlying mechanism. METHODS Cultured ANSCs were treated with purmorphamine (PM, an agonist of Smo) or cyclopamine (CPM, an inhibitor of Smo), and the changes in cell proliferation migration abilities were assessed using cell counting kit-8 (CCK8) assay and wound healing assay, respectively. The mRNA expressions of membrane receptor Patched 1 (Ptch1), Smo, glioma-associated oncogene homolog 1 (Gli1), axon guidance cue slit1 (Slit1) and brain-derived neurotrophic factor (BDNF) in the treated cells were detected using real-time quantitative PCR (RT-PCR). RESULTS PM significantly promoted the proliferation (P < 0.01) and migration of ANSCs (P < 0.01), and up-regulated the mRNA expressions of Ptch1, Smo, Gli1, Slit1 and BDNF. Treatment with CPM significantly inhibited the proliferation and migration of ANSCs. CONCLUSION Modulating Smo activity can positively regulate the proliferation and migration of ANSCs possibly by regulating the expressions of BDNF and Slit1.
Collapse
Affiliation(s)
- X Qiu
- Experiment Teaching and Administration Center, Southern Medical University, Guangzhou 510515, China
| | - H Chen
- Department of Neurosurgery, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - D Feng
- Institute of Oncology, Southern Medical University, Guangzhou 510515, China
| | - W Dong
- Experiment Teaching and Administration Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Zhao J, Tian Y, Zhang H, Qu L, Chen Y, Liu Q, Luo Y, Wu X. p53 Mutant p53 N236S Induces Neural Tube Defects in Female Embryos. Int J Biol Sci 2019; 15:2006-2015. [PMID: 31523200 PMCID: PMC6743294 DOI: 10.7150/ijbs.31451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
The p53 is one of the most important tumor suppressors through surveillance of DNA damages and abnormal proliferation signals, and activation the cell cycle arrest and apoptosis in response to stress. However, the mutation of p53 is known to be oncogenic by both loss of function in inhibiting cell cycle progress and gain of function in promoting abnormal proliferation. In the present study, we have established a knock in mouse model containing an Asn-to-Ser substitution at p53 amino acid 236 by homologous recombination (p53N236S). Other than tumorigenesis phenotype, we found that p53S/S mice displayed female-specific phenotype of open neural tube in brain (exencephaly) and spinal cord (spina bifida). The occurrence rate for embryonic exencephaly is 68.5% in female p53S/S mice, which is much more than that of in p53-/- mice (37.1%) in the same genetic background. Further study found that p53N236S mutation increased neuronal proliferation and decreased neuronal differentiation and apoptosis. To rescue the phenotype, we inhibited cell proliferation by crossing Wrn-/- mice with p53S/S mice. The occurrence of NTDs in p53S/S Wrn-/- mice was 35.2%, thus suggesting that the inhibition of cell proliferation through a Wrn defect partially rescued the exencephaly phenotype in p53S/S mice. We also report that p53S decreased expression of UTX at mRNA and protein level via increasing Xist transcript, result in high female-specific H3K27me3 expression and repressed Mash1 transcription, which facilitating abnormal proliferation, differentiation, and apoptosis, result in the mis-regulation of neurodevelopment and neural tube defects (NTDs).
Collapse
Affiliation(s)
- Jinzhi Zhao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yingbing Tian
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Huihui Zhang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Lianhua Qu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yu Chen
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Qing Liu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| |
Collapse
|
7
|
Role of FGF signalling in neural crest cell migration during early chick embryo development. ZYGOTE 2018; 26:457-464. [DOI: 10.1017/s096719941800045x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryFibroblast growth factor (FGF) signalling acts as one of modulators that control neural crest cell (NCC) migration, but how this is achieved is still unclear. In this study, we investigated the effects of FGF signalling on NCC migration by blocking this process. Constructs that were capable of inducing Sprouty2 (Spry2) or dominant-negative FGFR1 (Dn-FGFR1) expression were transfected into the cells making up the neural tubes. Our results revealed that blocking FGF signalling at stage HH10 (neurulation stage) could enhance NCC migration at both the cranial and trunk levels in the developing embryos. It was established that FGF-mediated NCC migration was not due to altering the expression of N-cadherin in the neural tube. Instead, we determined that cyclin D1 was overexpressed in the cranial and trunk levels when Sprouty2 was upregulated in the dorsal neural tube. These results imply that the cell cycle was a target of FGF signalling through which it regulates NCC migration at the neurulation stage.
Collapse
|
8
|
Li Y, Zhang XT, Wang XY, Wang G, Chuai M, Münsterberg A, Yang X. Robo signaling regulates the production of cranial neural crest cells. Exp Cell Res 2017; 361:73-84. [PMID: 28987541 DOI: 10.1016/j.yexcr.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/08/2017] [Accepted: 10/03/2017] [Indexed: 11/27/2022]
Abstract
Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1+ cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development.
Collapse
Affiliation(s)
- Yan Li
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China; The key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Tan Zhang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiao-Yu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Wang G, Chen EN, Liang C, Liang J, Gao LR, Chuai M, Münsterberg A, Bao Y, Cao L, Yang X. Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo. Mol Neurobiol 2017; 55:3523-3536. [PMID: 28509082 DOI: 10.1007/s12035-017-0583-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/27/2017] [Indexed: 10/25/2022]
Abstract
Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7+ neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7+ and HNK-1+ cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1+ neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU+ neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle.
Collapse
Affiliation(s)
- Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.,Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - En-Ni Chen
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Chang Liang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Jianxin Liang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.,Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - Lin-Rui Gao
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7UQ, UK
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110001, China.
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Wiese S, Faissner A. The role of extracellular matrix in spinal cord development. Exp Neurol 2015; 274:90-9. [DOI: 10.1016/j.expneurol.2015.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 01/06/2023]
|
11
|
Zhang Y, Zhou S. MicroRNA-29a inhibits mesenchymal stem cell viability and proliferation by targeting Roundabout 1. Mol Med Rep 2015; 12:6178-84. [PMID: 26252416 DOI: 10.3892/mmr.2015.4183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022] Open
Abstract
Secreted Slit glycoproteins and their Roundabout (Robo) receptors have been identified as important axon guidance molecules. The pivotal role of Slit‑Robo signaling is in regulating cell proliferation. MicroRNAs (miRNAs), a class of small non‑coding RNAs, function as critical regulators of gene expression by binding to the 3'‑untranslated region of mRNAs and causing mRNA degradation or translational repression. The present study demonstrated that downregulation of Robo1 using small interfering RNA inhibited mesenchymal stem cell (MSC) proliferation. Additionally, four miRNAs (miR), including miR‑218, miR‑29a, miR‑146 and miR‑148, inhibited the protein expression of Robo1 in the MSCs, with miR‑29 having the most marked effect. A luciferase reporter assay identified Robo1 as a novel target of miR‑29a. Overexpression of miR‑29a suppressed the protein expression levels of Robo1 and Slit2 and inhibited the viability and proliferation of the MSCs. By contrast, overexpression of Robo1 partly rescued these inhibitory effects of miR‑29a on the MSCs confirming that miR‑29a inhibited MSC viability and proliferation, at least partially, by directly targeting Robo1. These results indicated that the miR‑29a/Robo1 axis is crucial for the regulation of MSC viability and proliferation, suggesting that miR‑29a may serve as a potential clinical target for MSC expansion and stem cell transplantation.
Collapse
Affiliation(s)
- Yudong Zhang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
12
|
Wang G, Li Y, Wang XY, Chuai M, Yeuk-Hon Chan J, Lei J, Münsterberg A, Lee KKH, Yang X. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis. Mol Biol Cell 2015; 26:978-92. [PMID: 25568339 PMCID: PMC4342032 DOI: 10.1091/mbc.e14-06-1144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This is the first study of the role of BRE in embryonic development using early chick embryos. BRE is expressed in the developing neural tube, neural crest cells, and somites. BRE thus plays an important role in regulating neurogenesis and indirectly somitogenesis during early chick embryo development. The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development.
Collapse
Affiliation(s)
- Guang Wang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yan Li
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiao-Yu Wang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - John Yeuk-Hon Chan
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jian Lei
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xuesong Yang
- Department of Histology and Embryology, School of Medicine, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Zhu H, Cai P, Zhu D, Xu C, Li H, Tang J, Xie H, Qin Y, Sharan A, Tang W, Xia Y. A common polymorphism in pre-miR-146a underlies Hirschsprung disease risk in Han Chinese. Exp Mol Pathol 2014; 97:511-514. [PMID: 25445498 DOI: 10.1016/j.yexmp.2014.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 11/06/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a rare multigenic congenital disorder characterized by the absence of the enteric ganglia. To date, single nucleotide polymorphisms (SNPs) in pre-miRNAs have been confirmed related with some diseases. Thus, we hypothesized that pre-miRNA polymorphisms might contribute to HSCR susceptibility. We investigated whether rs2910164 and rs11614913 of pre-miR-146a and pre-miR-196a2, are associated with HSCR. METHODS Polymorphisms were genotyped using the Taqman method. Real-time PCR was used for detecting the expression level of miR-146a and its target gene ROBO1 in CC and GG genotypes. RESULTS Significant differences were found in the genotype distribution of rs2910164 and rs11614913 polymorphism between HSCR cases and controls (p = 0.023 and 0.041, respectively). Furthermore, G allele of rs2910164 might increase the risk of HSCR (OR, 1.54; 95% CI, 1.06-2.23). Moreover, the expression level of miR-146a for homozygote GG was also higher than homozygote CC (p = 0.0193). In contrast, the expression level of its target gene ROBO1 predicted in bioinformatics for homozygote GG was much lower than homozygote CC (p = 0.0096). CONCLUSIONS Our results showed that the polymorphism rs2910164 in pre-miR-146a might alter the production of mature miR-146a and then down-regulate the target gene ROBO1, which plays an important role in pathogenesis of HSCR.
Collapse
Affiliation(s)
- Hairong Zhu
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Peng Cai
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongmei Zhu
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chao Xu
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongxing Li
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junwei Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hua Xie
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ankur Sharan
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weibing Tang
- Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
14
|
Chen Y, Wang G, Ma ZL, Li Y, Wang XY, Cheng X, Chuai M, Tang SZ, Lee KKH, Yang X. Adverse effects of high glucose levels on somite and limb development in avian embryos. Food Chem Toxicol 2014; 71:1-9. [PMID: 24882757 DOI: 10.1016/j.fct.2014.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022]
Abstract
Gestational diabetes has an adverse impact on fetal musculoskeletal development, but the mechanism involved is still not completely understood. In this study, we investigated the effects of high glucose on the developing somites and their derivate using the chick embryo as a model. We demonstrated that under high glucose, the number of generated somites was reduced and their morphology altered in 2-day old chick embryos. In addition, high glucose repressed the development of the limb buds in 5.5-day old chick embryos. We also demonstrated that high glucose abridged the development of the sclerotome and the cartilage in the developing limb bud. The sonic hedgehog (Shh) gene has been reported to play a crucial role in the development and differentiation of sclerotome. Hence, we examined how Shh expression in the sclerotome was affected under high glucose. We found that high glucose treatment significantly inhibited Shh expression. The high glucose also impaired myotome formation at trunk level - as revealed by immunofluorescent staining with MF20 antibodies. In the neural tube, we established that Wnt3a expression was also significantly repressed. In summary, our study demonstrates that high glucose concentrations impair somite and limb bud development in chick embryos, and suggests that Shh and Wnt genes may play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zheng-lai Ma
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Yan Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiao-yu Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Shu-ze Tang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Institute of Fetal-Preterm Labor Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|