1
|
Toledano S, Sabag AD, Ilan N, Liburkin-Dan T, Kessler O, Neufeld G. Plexin-A2 enables the proliferation and the development of tumors from glioblastoma derived cells. Cell Death Dis 2023; 14:41. [PMID: 36658114 PMCID: PMC9852426 DOI: 10.1038/s41419-023-05554-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
The semaphorin guidance factors receptor plexin-A2 transduces sema6A and sema6B signals and may mediate, along with plexin-A4, the anti-angiogenic effects of sema6A. When associated with neuropilins plexin-A2 also transduces the anti-angiogenic signals of sema3B. Here we show that inhibition of plexin-A2 expression in glioblastoma derived cells that express wild type p53 such as U87MG and A172 cells, or in primary human endothelial cells, strongly inhibits cell proliferation. Inhibition of plexin-A2 expression in U87MG cells also results in strong inhibition of their tumor forming ability. Knock-out of the plexin-A2 gene in U87MG cells using CRISPR/Cas9 inhibits cell proliferation which is rescued following plexin-A2 re-expression, or expression of a truncated plexin-A2 lacking its extracellular domain. Inhibition of plexin-A2 expression results in cell cycle arrest at the G2/M stage, and is accompanied by changes in cytoskeletal organization, cell flattening, and enhanced expression of senescence associated β-galactosidase. It is also associated with reduced AKT phosphorylation and enhanced phosphorylation of p38MAPK. We find that the pro-proliferative effects of plexin-A2 are mediated by FARP2 and FYN and by the GTPase activating (GAP) domain located in the intracellular domain of plexin-A2. Point mutations in these locations inhibit the rescue of cell proliferation upon re-expression of the mutated intracellular domain in the knock-out cells. In contrast re-expression of a plexin-A2 cDNA containing a point mutation in the semaphorin binding domain failed to inhibit the rescue. Our results suggest that plexin-A2 may represent a novel target for the development of anti-tumorigenic therapeutics.
Collapse
Affiliation(s)
- Shira Toledano
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Adi D Sabag
- Division of Allergy & Clinical Immunology, Bnai-Zion medical Center, Haifa, 33394, Israel
| | - Neta Ilan
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Tanya Liburkin-Dan
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Ofra Kessler
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel
| | - Gera Neufeld
- Cancer research center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109602, Israel.
| |
Collapse
|
2
|
The emerging roles of semaphorin4D/CD100 in immunological diseases. Biochem Soc Trans 2021; 48:2875-2890. [PMID: 33258873 DOI: 10.1042/bst20200821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023]
Abstract
In vertebrates, the semaphorin family of proteins is composed of 21 members that are divided into five subfamilies, i.e. classes 3 to 7. Semaphorins play crucial roles in regulating multiple biological processes, such as neural remodeling, tissue regeneration, cancer progression, and, especially, in immunological regulation. Semaphorin 4D (SEMA4D), also known as CD100, is an important member of the semaphorin family and was first characterized as a lymphocyte-specific marker. SEMA4D has diverse effects on immunologic processes, including immune cell proliferation, differentiation, activation, and migration, through binding to its specific membrane receptors CD72, PLXNB1, and PLXNB2. Furthermore, SEMA4D and its underlying signaling have been increasingly linked with several immunological diseases. This review focuses on the significant immunoregulatory role of SEMA4D and the associated underlying mechanisms, as well as the potential application of SEMA4D as a diagnostic marker and therapeutic target for the treatment of immunological diseases.
Collapse
|
3
|
Semaphorin Signaling in Cancer-Associated Inflammation. Int J Mol Sci 2019; 20:ijms20020377. [PMID: 30658382 PMCID: PMC6358995 DOI: 10.3390/ijms20020377] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.
Collapse
|
4
|
Wen JX, Li XQ, Chang Y. Signature Gene Identification of Cancer Occurrence and Pattern Recognition. J Comput Biol 2018; 25:907-916. [PMID: 29957033 DOI: 10.1089/cmb.2017.0261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To identify signature genes for the pathogenesis of cancer, which provides a theoretical support for prevention and early diagnosis of cancer. The pattern recognition method was used to analyze the genome-wide gene expression data, which was collected from the The Cancer Genome Atlas (TCGA) database. For the transcription of invasive breast carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, colon adenocarcinoma, renal clear-cell carcinoma, thyroid carcinoma, and hepatocellular carcinoma of the seven cancers, the signature genes were selected by means of a combination of statistical methods, such as correlation, t-test, confidence interval, etc. Modeling by artificial neural network model, the accuracy can be as high as 98% for the TCGA data and as high as 92% for the Gene Expression Omnibus (GEO) independent data, the recognition accuracy of stage I is more than 95%, which is higher compared with the previous study. The common genes emerging in five cancers were obtained from the signature genes of seven cancers, PID1, and SPTBN2. At the same time, we obtain three common pathways of cancer by using Kyoto Encyclopedia of Genes and Genomes' pathway analysis. A functional analysis of the pathways shows their close relationship at the level of gene regulation, which indicted that the identified signature genes play an important role in the pathogenesis of cancer and is very important for understanding the pathogenesis of cancer and the early diagnosis.
Collapse
Affiliation(s)
- Jian-Xin Wen
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, P.R. China
| | - Xiao-Qin Li
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, P.R. China
| | - Yu Chang
- College of Life Science and Bioengineering, Beijing University of Technology , Beijing, P.R. China
| |
Collapse
|
5
|
Wallerius M, Wallmann T, Bartish M, Östling J, Mezheyeuski A, Tobin NP, Nygren E, Pangigadde P, Pellegrini P, Squadrito ML, Pontén F, Hartman J, Bergh J, De Milito A, De Palma M, Östman A, Andersson J, Rolny C. Guidance Molecule SEMA3A Restricts Tumor Growth by Differentially Regulating the Proliferation of Tumor-Associated Macrophages. Cancer Res 2016; 76:3166-78. [PMID: 27197153 DOI: 10.1158/0008-5472.can-15-2596] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Abstract
Accumulation of tumor-associated macrophages (TAM) correlates with malignant progression, immune suppression, and poor prognosis. In this study, we defined a critical role for the cell-surface guidance molecule SEMA3A in differential proliferative control of TAMs. Tumor cell-derived SEMA3A restricted the proliferation of protumoral M2 macrophages but increased the proliferation of antitumoral M1, acting through the SEMA3A receptor neuropilin 1. Expansion of M1 macrophages in vivo enhanced the recruitment and activation of natural killer (NK) cells and cytotoxic CD8(+) T cells to tumors, inhibiting their growth. In human breast cancer specimens, we found that immunohistochemical levels of SEMA3A correlated with the expression of genes characteristic of M1 macrophages, CD8(+) T cells, and NK cells, while inversely correlating with established characters of malignancy. In summary, our results illuminate a mechanism whereby the TAM phenotype is controlled and identify the cell-surface molecule SEMA3A as a candidate for therapeutic targeting. Cancer Res; 76(11); 3166-78. ©2016 AACR.
Collapse
Affiliation(s)
- Majken Wallerius
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Tatjana Wallmann
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Margarita Bartish
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Jeanette Östling
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Artur Mezheyeuski
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Emma Nygren
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Pradeepa Pangigadde
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Paola Pellegrini
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Mario Leonardo Squadrito
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden. Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden. Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - John Andersson
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|