1
|
Huang X, Zhu J, Wei T, Luo L, Li C, Zhao M. Epigenetic Modifications in Vitiligo. Clin Rev Allergy Immunol 2025; 68:39. [PMID: 40205284 DOI: 10.1007/s12016-025-09048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Vitiligo is an autoimmune depigmenting skin disorder and can affect the mental health of the patients. Current research suggests that the development of vitiligo involves a combination of genetic susceptibility, immune imbalance, and oxidative stress. However, its pathogenesis has not been fully elucidated. Epigenetic modification has gained increasing attention as an emerging way to regulate gene expression at the transcriptional or post-transcriptional level. Currently known modes of epigenetic modification include the regulation of non-coding RNAs, DNA methylation, and histone modification. Studies suggest they play important roles in tumors, immune disorders, and inflammatory diseases. In recent years, the value of epigenetics in the diagnosis, treatment, and prognosis of vitiligo has been explored. They showed the potential to serve as biomarkers and play a therapeutic role. In this review, we summarize the epigenetic modification mechanisms involved in the pathogenesis of vitiligo, including physiological processes such as immune homeostasis, melanocyte survival, cell adhesion and migration, and metabolism. This will help us fully understand the progress of epigenetic research in vitiligo and lay the foundation for targeted therapeutic-related research.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Tianqi Wei
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Lingling Luo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Ming Zhao
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Chen Y, Li H, Wang J, Yang S, Su Z, Wang W, Rao C, Hou L. The Ednrb-Aim2-AKT axis regulates neural crest-derived melanoblast proliferation during early development. Development 2024; 151:dev202444. [PMID: 39555938 DOI: 10.1242/dev.202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Ednrb is specifically required to develop neural crest (NC) stem cell-derived lineages. However, it is still unknown why Ednrb signaling is only needed for the early development of melanoblasts in the skin and eye. We show that Ednrb is required for the proliferation of melanoblasts during early mouse development. To understand the mechanism of melanoblast proliferation, we found that the gene absent in melanoma 2 (Aim2) is upregulated in Ednrb-deficient NC cells by RNA-sequencing analysis. Consequently, the knockdown or knockout of Aim2 partially rescued the proliferation of Ednrb-deficient melanoblasts. Conversely, the overexpression of Aim2 in melanoblasts suppressed their proliferation. We further show that Ednrb signaling could act through the microRNA miR-196b to block the suppression of melanoblast proliferation by Aim2 in primary NC cell cultures. These results reveal the Ednrb-Aim2-AKT axis in regulating melanocyte development and suggest that Ednrb signaling functions as a negative regulator of Aim2, which inhibits the proliferation of melanoblasts in early development. These findings uncover a previously unreported role for Aim2 outside the inflammasome, showing that it is a significant regulator controlling NC stem cell-derived lineage development.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huirong Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jing Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shanshan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongyuan Su
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wanxiao Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunbao Rao
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Wang X, Wu Y, Du P, Xu L, Chen Y, Li J, Pan X, Wang Z. Study on the Mechanism of miR-125b-5p Affecting Melanocyte Biological Behavior and Melanogenesis in Vitiligo through Regulation of MITF. DISEASE MARKERS 2022; 2022:6832680. [PMID: 36438898 PMCID: PMC9683948 DOI: 10.1155/2022/6832680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 04/17/2025]
Abstract
OBJECTIVE The goal was to confirm the mechanism by which miR-125b-5p influences melanocyte biological behavior and melanogenesis in vitiligo by regulating MITF. METHODS oe-MITF, sh-MITF, miR-125b-5p mimic, NC-mimic, NC-inhibitor, and miR-125b-5p inhibitor were transfected into cells by cell transfection. Western blotting was used to detect the related protein expression, qRT-PCR was used to detect miR-125b-5p and MITF expression, immunohistochemistry was used to detect the MITF-positive cells in vitiligo patients tissues, and a dual-luciferase reporter system was used to detect the target of miR-125b-5p and MITF. PIG1 and PIG3V cell proliferation by the CCK-8 method, cell cycle progression and apoptosis by flow cytometry, apoptosis was detected by TUNEL, Tyr activity and melanin content were measured using Tyr and melanin content assay kits. RESULTS Compared with the healthy control group, the expression of miR-125b-5p in the tissues and serum of vitiligo patients was upregulated, and the expression of MITF was downregulated; compared with PIG1 cells, the expression of miR-125b-5p and MITF in the PIG3V group was consistent with the above. Compared with the NC-minic group, the cell proliferation activity of the miR-125b-5p mimic group decreased, apoptosis increased, and the expression levels of melanogenesis-related proteins Tyr, Tyrp1, Tyrp2, and DCT were downregulated. Compared with the NC-inhibitor group, the above indices in the miR-125b-5p inhibitor group were all opposite to those in the miR-125b-5p mimic group. Transfection of oe-MITF into the miR-125b-5p mimic group reversed the effect of the miR-125b-5p mimic, while transfection of sh-MITF enhanced the effect of the miR-125b-5p mimic. CONCLUSION miR-125b-5p affects vitiligo melanocyte biological behavior and melanogenesis by downregulating MITF expression.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China
| | - Yifei Wu
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China
| | - Peng Du
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China
| | - Liangheng Xu
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China
| | - Yuan Chen
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China
| | - Jingzi Li
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China
| | - Xuying Pan
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China
| | - Zhiqiong Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China
| |
Collapse
|
4
|
Bone Morphogenic Protein Signaling and Melanoma. Curr Treat Options Oncol 2021; 22:48. [PMID: 33866453 DOI: 10.1007/s11864-021-00849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
OPINION STATEMENT Malignant melanoma is a deadly form of skin cancer caused by neoplastic transformation of melanocytic cells. Despite recent progress in melanoma therapy, by inhibition of activated oncogenes or immunotherapy, survival rate for metastatic melanoma patients remains low. The remarkable phenotypic plasticity of melanoma cells allows for rapid development of invasive properties and metastatic tumors, the main cause of mortality in melanoma patients. Phenotypic and molecular analyses of developing tumors revealed that epithelial-mesenchymal transition (EMT), a cellular and molecular mechanism, controls transition from mature melanocyte to less differentiated melanocyte lineage progenitor cells forming melanoma tumors. This transition is facilitated by persistence of transcriptional regulatory circuit characteristic of embryonic stage in mature melanocytes. Switching of the developmental program of mature melanocyte to EMT is induced by accumulated mutations, especially targeting BRAF, N-RAS, or MEK1/2 signaling pathways, and further promoted by dynamic stimuli from local environment including hypoxia, interactions with extracellular matrix and growth factors or cytokines. Recent reports demonstrate that signaling mediated by transforming growth factor-β (TGF-β) and bone morphogenic proteins (BMPs) play critical roles in inducing EMT by controlling expression of critical transcription factors. BMPs are essential modulators of differentiation, proliferation, apoptosis, invasiveness, and metastases in developing melanoma tumors. They control transcription and epigenetic landscape of melanoma cells. Better understanding of the role of BMPs may lead to new strategies to control EMT processes in melanocyte cell lineage and to achieve clinical benefits for the patients.
Collapse
|
5
|
Infarinato NR, Stewart KS, Yang Y, Gomez NC, Pasolli HA, Hidalgo L, Polak L, Carroll TS, Fuchs E. BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes Dev 2020; 34:1713-1734. [PMID: 33184221 PMCID: PMC7706702 DOI: 10.1101/gad.340281.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single-cell RNA sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing converging signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated. Employing conditional lineage-specific genetic ablation studies in mice, we found that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream from activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1- and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.
Collapse
Affiliation(s)
- Nicole R Infarinato
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Katherine S Stewart
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Yihao Yang
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Lynette Hidalgo
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Lisa Polak
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
6
|
Serum levels of miRNA-21-5p in vitiligo patients and effects of miRNA-21-5p on SOX5, beta-catenin, CDK2 and MITF protein expression in normal human melanocytes. J Dermatol Sci 2020; 101:22-29. [PMID: 33176966 DOI: 10.1016/j.jdermsci.2020.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epigenetics of vitiligo was evaluated in few studies. In particular, the role of miR-21, a microRNA involved in various processes, including melanogenesis, was never investigated. OBJECTIVE Evaluation of serum levels of miR-21-5p in vitiligo patients and miR-21-5p effects on melanogenesis. METHODS We measured serum levels of miR-21-5p in 40 patients affected by nonsegmental vitiligo and 40 sex- and age-matched healthy controls. Next, normal human melanocytes were transfected with miR-21-5p to study the effects of this microRNA, which targeted some proteins involved in melanogenesis pathway like SOX5, beta-catenin, cyclin-dependent kinase 2 (CDK2), and MITF. RESULTS The expression of miR-21-5p in vitiligo patients was 3.6-4454.4 fold (mean 990.4 ± 1397.9) higher than in controls. The relative expression of miR-21-5p was directly and significantly correlated with disease severity, defined by VASI (Vitiligo Area and Severity Index) score (Rho = 0.89, p = 10-7), but not other individual or clinical characteristics. In the second part of the study, a significant reduction of SOX5, beta-catenin and CDK2 protein expression and increase of MITF protein expression was observed in cultured melanocytes after 24 h trasfection with miR-21-5p. CONCLUSION According to literature, miR-21-5p upregulation and consequent SOX5 downregulation should upregulate melanogenesis, while vitiligo is characterized by skin depigmentation. Our results suggest that current knowledge of the pathogenesis of vitiligo is probably incomplete. Clinical manifestations could result from an altered balance between metabolic pathways with contrasting effects. In this view, miR-21-5p upregulation might be a tentative compensation mechanism. Further studies appear necessary to confirm and better understand our results and their importance.
Collapse
|
7
|
Yoon JH, Kim HJ, Kim JH, Kim TH, Seo CH, Sung YK, Kim KH. BMP4-Induced Differentiation of Human Hair Follicle Neural Crest Stem Cells into Precursor Melanocytes from Hair Follicle Bulge. Ann Dermatol 2020; 32:409-416. [PMID: 33911776 PMCID: PMC7992575 DOI: 10.5021/ad.2020.32.5.409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022] Open
Abstract
Background Vitiligo is a skin depigmentation disorder, for which, repigmentation treatment with combined follicular unit extraction (FUE) graft and narrowband ultraviolet B (NBUVB) is considered superior to micro-punch graft therapy. BMP4 can induce MITF expression in Neural crest stem cells (NCSCs), and α-MSH subsequently promotes the differentiation of MITF-expressing cells along the melanocyte lineage. Objective To investigate why FUE grafting is superior to epidermal mini grafting in promoting hair follicles (HF) melanocyte cell survival and longevity, we planned the in vitro experiments HF bulge NCSCs differentiate into melanocyte precursors under the co-treatment of BMP4 and α-MSH. Methods Cells that migrated from the HF bulge of scalp were cultured and assessed using immunofluorescence. Transcriptome analysis was performed on RNA sequencing results. Results Basic fibroblast growth factor promotes the proliferation and survival of NCSCs, with spontaneous differentiation into SOX10+/SOX2+ glial progenitors, but not into SOX10+/MITF+ precursor melanocytes. Both BMP4 and α-MSH promoted the differentiation into MITF-expressing cells. RNA sequencing revealed a downregulation in neuregulin-1 (NRG1) and sermaphorin 3C (SEMA3C), and upregulation in WNT10A. Furthermore, FUE grafting had a source of reservoir melanocytes superior to mini- grafting in treatment for vitiligo. Conclusion We obtained SOX10+/MITF+ precursor melanocytes through an induction of differentiation along the melanocyte lineage by BMP4 and α-MSH. According to the RNA sequencing results that NRG1 and SEMA3C were downregulated and WNT10A was upregulated, we postulated that HF NCSCs differentiated into melanocyte by co-treatment of BMP4 and α-MSH. Overall, FUE grafting is a more robust and substitutive treatment option for vitiligo.
Collapse
Affiliation(s)
- Jung-Ho Yoon
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| | - Ho-Jin Kim
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| | - Jung-Hwan Kim
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| | - Tae-Hoon Kim
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| | - Chang-Hoon Seo
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yeong-Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ki-Ho Kim
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| |
Collapse
|
8
|
Mirea MA, Eckensperger S, Hengstschläger M, Mikula M. Insights into Differentiation of Melanocytes from Human Stem Cells and Their Relevance for Melanoma Treatment. Cancers (Basel) 2020; 12:E2508. [PMID: 32899370 PMCID: PMC7564443 DOI: 10.3390/cancers12092508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma represents a highly aggressive form of skin cancer. The metastatic process itself is mostly governed by the so-called epithelial mesenchymal transition (EMT), which confers cancer cells migrative, invasive and resistance abilities. Since EMT represents a conserved developmental process, it is worthwhile further examining the nature of early developmental steps fundamental for melanocyte differentiation. This can be done either in vivo by analyzing the physiologic embryo development in different species or by in vitro studies of melanocytic differentiation originating from embryonic human stem cells. Most importantly, external cues drive progenitor cell differentiation, which can be divided in stages favoring neural crest specification or melanocytic differentiation and proliferation. In this review, we describe ectopic factors which drive human pluripotent stem cell differentiation to melanocytes in 2D, as well as in organoid models. Furthermore, we compare developmental mechanisms with processes described to occur during melanoma development. Finally, we suggest differentiation factors as potential co-treatment options for metastatic melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Mario Mikula
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University Vienna, Währingerstrasse 10, 1090 Vienna, Austria; (M.A.M.); (S.E.); (M.H.)
| |
Collapse
|
9
|
Ma X, Li H, Chen Y, Yang J, Chen H, Arnheiter H, Hou L. The transcription factor MITF in RPE function and dysfunction. Prog Retin Eye Res 2019; 73:100766. [DOI: 10.1016/j.preteyeres.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
|
10
|
García-Jiménez C, Goding CR. Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming. Cell Metab 2019; 29:254-267. [PMID: 30581118 PMCID: PMC6365217 DOI: 10.1016/j.cmet.2018.11.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Considerable progress has been made in identifying microenvironmental signals that effect the reversible phenotypic transitions underpinning the early steps in the metastatic cascade. However, although the general principles underlying metastatic dissemination have been broadly outlined, a common theme that unifies many of the triggers of invasive behavior in tumors has yet to emerge. Here we discuss how many diverse signals that induce invasion converge on the reprogramming of protein translation via phosphorylation of eIF2α, a hallmark of the starvation response. These include starvation as a consequence of nutrient or oxygen limitation, or pseudo-starvation imposed by cell-extrinsic microenvironmental signals or by cell-intrinsic events, including oncogene activation. Since in response to resource limitation single-cell organisms undergo phenotypic transitions remarkably similar to those observed within tumors, we propose that a starvation/pseudo-starvation model to explain cancer progression provides an integrated and evolutionarily conserved conceptual framework to understand the progression of this complex disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- Area de Fisiología, Facultad de CC de la Salud, Universidad Rey Juan Carlos, Avenida Atenas s/n, Alcorcón, Madrid 28922, Spain
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Old Road Campus, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
11
|
Li H, Hou L. Regulation of melanocyte stem cell behavior by the niche microenvironment. Pigment Cell Melanoma Res 2018; 31:556-569. [PMID: 29582573 DOI: 10.1111/pcmr.12701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
Somatic stem cells are regulated by their niches to maintain tissue homeostasis and repair throughout the lifetime of an organism. An excellent example to study stem cell/niche interactions is provided by the regeneration of melanocytes during the hair cycle and in response to various types of injury. These processes are regulated by neighboring stem cells and multiple signaling pathways, including WNT/β-catenin, KITL/KIT, EDNs/EDNRB, TGF-β/TGF-βR, α-MSH/MC1R, and Notch signaling. In this review, we highlight recent studies that have advanced our understanding of the molecular crosstalk between melanocyte stem cells and their neighboring cells, which collectively form the niche microenvironment, and we focus on the question of how McSCs/niche interactions shape the responses to genotoxic damages and mechanical injury.
Collapse
Affiliation(s)
- Huirong Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Szczyrba J, Niesen A, Wagner M, Wandernoth PM, Aumüller G, Wennemuth G. Neuroendocrine Cells of the Prostate Derive from the Neural Crest. J Biol Chem 2016; 292:2021-2031. [PMID: 28003366 PMCID: PMC5290971 DOI: 10.1074/jbc.m116.755082] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
The histogenesis of prostatic neuroendocrine cells is controversial: a stem cell hypothesis with a urogenital sinus-derived progeny of all prostatic epithelial cells is opposed by a dual origin hypothesis, favoring the derivation of neuroendocrine cells from the neural crest, with the secretory and basal cells being of urogenital sinus origin. A computer-assisted 3D reconstruction was used to analyze the distribution of chromogranin A immunoreactive cells in serial sections of human fetal prostate specimens (gestation weeks 18 and 25). Immunohistochemical double labeling studies with YFP and serotonin antisera combined with electron microscopy were carried out on double-transgenic Wnt1-Cre/ROSA26-YFP mice showing stable YFP expression in all neural crest-derived cell populations despite loss of Wnt1 expression. 3D reconstruction of the distribution pattern of neuroendocrine cells in the human fetal prostate indicates a migration of paraganglionic cells passing the stroma and reaching the prostate ducts. Double-transgenic mice showed 55% double labeling of periurethral neuroendocrine cells expressing both serotonin and YFP, whereas single serotonin labeling was observed in 36% and exclusive YFP labeling in 9%. The results favor the assumption of a major fraction of neural crest-derived neuroendocrine cells in both the human and murine prostates.
Collapse
Affiliation(s)
- Jaroslaw Szczyrba
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Anne Niesen
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Mathias Wagner
- the Institute of Pathology, Saarland University Medical School, 66421 Homburg/Saar, Germany
| | - Petra M Wandernoth
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Gerhard Aumüller
- the Department of Anatomy and Cell Biology, Philipps University of Marburg, Robert-Koch-Strasse 8, 35037 Marburg, Germany
| | - Gunther Wennemuth
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
13
|
Hu S, Liu Y, Yang S, Ji K, Liu X, Zhang J, Fan R, Dong C. The effects of IGF1 on the melanogenesis in alpaca melanocytes in vitro. In Vitro Cell Dev Biol Anim 2016; 52:806-11. [PMID: 27173613 DOI: 10.1007/s11626-016-0052-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022]
Abstract
In order to investigate the effects of the insulin-like growth factor 1(IGF-1) on alpaca melanocyte in vitro, different dosees of IGF1 (0, 10, 20, 40 ng/ml) were added in the medium of alpaca melanocyte. The RTCA machine was used to monitor the proliferation, quantitative real-time PCR, and western blot to test the relative gene expression, ELISA to test cAMP production, and spectrum method to test the melanin production. The results showed that compared to the normal melanocyte, the proliferation of melanocytes was increased within 60 h following adding IGF1. It also showed that cAMP content produced by melanocytes was increased, microphthalmia-associtated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein 2 (TYRP2) expression was increased, and melanin production with most obvious change in 10 ng/ml supplementary group, when compared with the control group. The results suggested that IGF1 with the dose of 10 ng/ml had the important effects on the melanogenesis in alpaca melanocyte by the cAMP pathway.
Collapse
Affiliation(s)
- Shuaipeng Hu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu, 030801, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu, 030801, China
| | - Shanshan Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu, 030801, China
| | - Kaiyuan Ji
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu, 030801, China
| | - Xuexian Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu, 030801, China
| | - Junzhen Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu, 030801, China
| | - Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu, 030801, China.
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu, 030801, China
| |
Collapse
|