1
|
Zhou X, Zhou S, Li Y. An updated review on abnormal epigenetic modifications in the pathogenesis of systemic lupus erythematosus. Front Immunol 2025; 15:1501783. [PMID: 39835138 PMCID: PMC11743643 DOI: 10.3389/fimmu.2024.1501783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. The inconsistent prevalence of SLE between monozygotic twins suggests that environmental factors affect the occurrence of this disease. Abnormal epigenetic regulation is strongly associated with the pathogenesis of SLE. Epigenetic mechanisms may be involved in the development of lupus through DNA methylation, histone modification, noncoding RNAs, and other modifications. This review aims to show numerous studies as a treasure map to better understand the effects of aberrant epigenetic modification in the onset and development of SLE, which will benefit the current basic research and provide potential diagnostic biomarkers or therapeutic targets for SLE.
Collapse
Affiliation(s)
| | | | - Yaping Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya
Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhao X, Dong R, Tang Z, Wang J, Wang C, Song Z, Ni B, Zhang L, He X, You Y. Circular RNA circLOC101928570 suppresses systemic lupus erythematosus progression by targeting the miR-150-5p/c-myb axis. J Transl Med 2022; 20:547. [DOI: 10.1186/s12967-022-03748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/02/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Accumulating evidence supports the implication of circular RNAs (circRNAs) in systemic lupus erythematosus (SLE). However, little is known about the detailed mechanisms and roles of circRNAs in the pathogenesis of SLE.
Methods
Quantitative real-time PCR was used to determine the levels of circLOC101928570 and miR-150-5p in peripheral blood mononuclear cells of SLE. Overexpression and knockdown experiments were conducted to assess the effects of circLOC101928570. Fluorescence in situ hybridization, RNA immunoprecipitation, luciferase reporter assays, Western blot, flow cytometry analysis and enzyme-linked immunosorbent assay were used to investigate the molecular mechanisms underlying the function of circLOC101928570.
Results
The results showed that the level of circLOC101928570 was significantly downregulated in SLE and correlated with the systemic lupus erythematosus disease activity index. Functionally, circLOC101928570 acted as a miR-150-5p sponge to relieve the repressive effect on its target c-myb, which modulates the activation of immune inflammatory responses. CircLOC101928570 knockdown enhanced apoptosis. Moreover, circLOC101928570 promoted the transcriptional level of IL2RA by directly regulating the miR-150-5p/c-myb axis.
Conclusion
Overall, our findings demonstrated that circLOC101928570 played a critical role in SLE. The downregulation of circLOC101928570 suppressed SLE progression through the miR-150-5p/c-myb/IL2RA axis. Our findings identified that circLOC101928570 serves as a potential biomarker for the diagnosis and therapy of SLE.
Collapse
|
3
|
Ye H, Sun A, Xiao W, Zhang T, Xu Z, Shi L, Sha X, Yang H. Differential Circular RNA Expression Profiling of Orbital Connective Tissue From Patients With Type I and Type II Thyroid-Associated Ophthalmopathy. Invest Ophthalmol Vis Sci 2022; 63:27. [DOI: 10.1167/iovs.63.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Anqi Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Te Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhihui Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lu Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaotong Sha
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Yin W, Zhang Z, Xiao Z, Li X, Luo S, Zhou Z. Circular RNAs in diabetes and its complications: Current knowledge and future prospects. Front Genet 2022; 13:1006307. [PMID: 36386812 PMCID: PMC9643748 DOI: 10.3389/fgene.2022.1006307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
A novel class of non-coding RNA transcripts called circular RNAs (circRNAs) have been the subject of significant recent studies. Accumulating evidence points that circRNAs play an important role in the cellular processes, inflammatory expression, and immune responses through sponging miRNA, binding, or translating in proteins. Studies have found that circRNAs are involved in the physiologic and pathologic processes of diabetes. There has been an increased focus on the relevance of between abnormal circRNA expression and the development and progression of various types of diabetes and diabetes-related diseases. These circRNAs not only serve as promising diagnostic and prognostic molecular biomarkers, but also have important biological roles in islet cells, diabetes, and its complications. In addition, many circRNA signaling pathways have been found to regulate the occurrence and development of diabetes. Here we comprehensively review and discuss recent advances in our understanding of the physiologic function and regulatory mechanisms of circRNAs on pancreatic islet cells, different subtypes in diabetes, and diabetic complications.
Collapse
|
5
|
Zhang S, Shen Z, Chao G, Du X, Zhang W, Jin D, Liu Y. Circ_0004712 Silencing Suppresses the Aggressive Changes of Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Targeting miR-633/TRAF6 Axis. Biochem Genet 2022; 61:521-537. [PMID: 35984539 DOI: 10.1007/s10528-022-10265-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Circular RNA_0004712 (circ_0004712) is reported to be up-regulated in rheumatoid arthritis (RA) patients. Nevertheless, its role and mechanism in RA pathology remain to be clarified. RNA and protein expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell viability, proliferation, apoptosis, migration, and inflammation were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 5-ethynyl-20-deoxyuridine assay, flow cytometry, scratch test, and enzyme-linked immunosorbent assay. The target correlation between microRNA-633 (miR-633) and circ_0004712 or TNF receptor associated factor 6 (TRAF6) was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Circ_0004712 was up-regulated in RA synovial tissues and RA fibroblast-like synoviocytes (RA-FLSs). Circ_0004712 silencing suppressed the viability, proliferation, migration and inflammatory response and facilitated the apoptosis of RA-FLSs. miR-633 was confirmed to be a direct target of circ_0004712, and miR-633 knockdown reversed circ_0004712 silencing-mediated protective effects on the dysfunction and inflammation of RA-FLSs. TRAF6 was a direct target of miR-633, and miR-633 overexpression suppressed the aggressive changes of RA-FLSs by down-regulating TRAF6. Circ_0004712 could up-regulate TRAF6 expression by sponging miR-633 in RA-FLSs. Circ_0004712 interference inactivated nuclear factor (NF)-κB signaling by targeting miR-633/TRAF6 axis. Circ_0004712 silencing inhibited the aggressive changes of RA-FLSs by targeting miR-633/TRAF6 axis and NF-κB signaling, which provided new targets for RA therapy.
Collapse
Affiliation(s)
- Shihui Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Zhizhong Shen
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical University, Weihui City, 453100, Henan, China
| | - Gao Chao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Xiaolong Du
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Wentao Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Dan Jin
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Xi'an 710054, Shaanxi, China
| | - Yafei Liu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi Dong Lu, Nanshaomen, Xi'an City, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
6
|
Reconstruction of Full-Length circRNA Sequences Using Chimeric Alignment Information. Int J Mol Sci 2022; 23:ijms23126776. [PMID: 35743218 PMCID: PMC9223815 DOI: 10.3390/ijms23126776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Circular RNAs (circRNAs) are RNA molecules formed by joining a downstream 3 splice donor site and an upstream 5 splice acceptor site. Several recent studies have identified circRNAs as potential biomarker for different diseases. A number of methods are available for the identification of circRNAs. The circRNA identification methods cannot provide full-length sequences. Reconstruction of the full-length sequences is crucial for the downstream analyses of circRNA research including differential expression analysis, circRNA-miRNA interaction analysis and other functional studies of the circRNAs. However, a limited number of methods are available in the literature for the reconstruction of full-length circRNA sequences. We developed a new method, circRNA-full, for full-length circRNA sequence reconstruction utilizing chimeric alignment information from the STAR aligner. To evaluate our method, we used full-length circRNA sequences produced by isocirc and ciri-long using long-reads RNA-seq data. Our method achieved better reconstruction rate, precision, sensitivity and F1 score than the existing full-length circRNA sequence reconstruction tool ciri-full for both human and mouse data.
Collapse
|
7
|
Khan FA, Nsengimana B, Khan NH, Song Z, Ngowi EE, Wang Y, Zhang W, Ji S. Chimeric Peptides/Proteins Encoded by circRNA: An Update on Mechanisms and Functions in Human Cancers. Front Oncol 2022; 12:781270. [PMID: 35223470 PMCID: PMC8874284 DOI: 10.3389/fonc.2022.781270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
The discovery of circular RNAs and exploration of their biological functions are increasingly attracting attention in cell bio-sciences. Owing to their unique characteristics of being highly conserved, having a relatively longer half-life, and involvement in RNA maturation, transportation, epigenetic regulation, and transcription of genes, it has been accepted that circRNAs play critical roles in the variety of cellular processes. One of the critical importance of these circRNAs is the presence of small open reading frames that enable them to encode peptides/proteins. In particular, these encoded peptides/proteins mediate essential cellular activities such as proliferation, invasion, epithelial-mesenchymal transition, and apoptosis and develop an association with the development and progression of cancers by modulating diverse signaling pathways. In addition, these peptides have potential roles as biomarkers for the prognosis of cancer and are being used as drug targets against tumorigenesis. In the present review, we thoroughly discussed the biogenesis of circRNAs and their functional mechanisms along with a special emphasis on the reported chimeric peptides/proteins encoded by circRNAs. Additionally, this review provides a perspective regarding the opportunities and challenges to the potential use of circRNAs in cancer diagnosis and therapeutic targets in clinics.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Nazeer Hussain Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhenhua Song
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yunyun Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Rahmati Y, Asemani Y, Aghamiri S, Ezzatifar F, Najafi S. CiRS-7/CDR1as; An oncogenic circular RNA as a potential cancer biomarker. Pathol Res Pract 2021; 227:153639. [PMID: 34649055 DOI: 10.1016/j.prp.2021.153639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) as a new class of non-coding RNAs (ncRNAs) play role in gene regulation in multicellular organisms via various interactions with nucleic acids, proteins and particularly microRNAs. They have been found to be involved in a number of biological functions particularly in regulation of cell cycle, and extracellular interactions. Thus, dysregulation of circRNAs is found to be associated with several human diseases and especially numerous types of cancers. ciRS-7 is an example of circRNAs which have been studied in a number of human diseases like neurological diseases, diabetes mellitus, and importantly different malignancies. It has been found to regulate cell proliferation and malignant features in cancer cells. CiRS-7 is upregulated in several cancers and its overexpression promoted malignant phenotype of cancer cells via enhancing cell proliferation, migration, and invasion in vitro and in vivo. As a competing endogenous RNA (ceRNA), ciRS-7 is found to sponge miR-7 as the most common miRNA target in interaction together. Functional analyses show role of ciRS-7 in downregulation of miR-7 and involvement of a series of signaling pathways in turn through them it is believed that ciRS-7 regulates malignant behaviors of cancer cells. Clinical studies demonstrate upregulation of ciRS-7 in cancer tissues compared to their non-cancerous adjacent tissues, correlation with worse clinicopathological features in cancerous patients and an independent prognostic factor. In this review, we have an overview to the role of ciRS-7 in development and progression of cancer and also assess its potentials as a diagnostic and prognostic biomarker in human cancers.
Collapse
Affiliation(s)
- Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Han Y, Zhang Y, Cao G, Shao L, Ding Q, Ma L. Dynamic expression of miRNAs and functional analysis of target genes involved in the response to male sterility of the wheat line YS3038. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:363-377. [PMID: 33730621 DOI: 10.1016/j.plaphy.2021.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Thermosensitive cytoplasmic male sterile (TCMS) lines play an important role in wheat breeding, heterosis utilization, and germplasm innovation. MicroRNAs (miRNAs) can regulate the expression level of target genes by inhibiting the translation of these genes. YS3038 is a wheat TCMS line. In this study, the fertility conversion mechanism of YS3038 was studied by examining the abortion characteristics of YS3038, the regulation pattern of miRNAs and the target genes of miRNAs in YS3038. MiRNA-seq was performed on three important stages of YS3038 under sterile and fertile conditions. Then, the clean reads were aligned with some databases to filter other ncRNAs and repeats. The known miRNAs and novel miRNAs were predicted by sequence comparison with known miRNAs from miRbase. Differential expression of miRNAs between different stages and between different fertile conditions was analyzed, and functional analysis of target genes with opposite expression patterns as those of the miRNAs was conducted. The Ubisch bodies and microspores of sterile anthers were covered with filamentous materials. The degradation of the tapetum cells, the chloroplast structure of endothecium cells, and the microspore structure were abnormal. Microspore development was hindered from the late uninucleate stage to the binucleate stage. Twenty, 52, and 68 differentially expressed miRNAs (DEmiRs) were identified at the early uninucleate, late uninucleate, and binucleate stages, respectively, and there were 0, 7, and 72 differentially expressed target genes (DETGs), respectively, at these three stages. At the binucleate stage, 29 DEmiRs had 41 target mRNAs in total, and the expression patterns of the 41 target mRNAs were opposite to those of the 29 miRNAs. Fifteen significantly enriched KEGG pathways were associated with the 41 target mRNAs. Leucine-rich repeat receptor-like kinases (LRR-RLKs) play important roles in plant developmental and physiological processes. Some studies have shown that the expression of LRR-RLKs is related to the differentiation of microsporocytes and tapetum cells and to male sterility. An LRR-RLK (TaeRPK) gene was silenced by the barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) method, and the seed setting rates of the TaeRPK-silenced plants (3.51%) were significantly lower than those of the negative control plants (88.78%) (P < 0.01). Thus, the TaeRPK gene is likely to be involved in the fertility conversion of YS3038.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiyang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guannan Cao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Leilei Shao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that resulted from the severe destruction of the insulin-producing β cells in the pancreases of individuals with a genetic predisposition. Genome-wide studies have identified HLA and other risk genes associated with T1D susceptibility in humans. However, evidence obtained from the incomplete concordance of diabetes incidence among monozygotic twins suggests that environmental factors also play critical roles in T1D pathogenesis. Epigenetics is a rapidly growing field that serves as a bridge to link T1D risk genes and environmental exposures, thereby modulating the expression of critical genes relevant to T1D development beyond the changes of DNA sequences. Indeed, there is compelling evidence that epigenetic changes induced by environmental insults are implicated in T1D pathogenesis. Herein, we sought to summarize the recent progress in terms of epigenetic mechanisms in T1D initiation and progression, and discuss their potential as biomarkers and therapeutic targets in the T1D setting.
Collapse
|
12
|
Xu L, Ye X, Zhong J, Chen YY, Wang LL. New Insight of Circular RNAs' Roles in Central Nervous System Post-Traumatic Injury. Front Neurosci 2021; 15:644239. [PMID: 33841083 PMCID: PMC8029650 DOI: 10.3389/fnins.2021.644239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The central nervous system (CNS) post-traumatic injury can cause severe nerve damage with devastating consequences. However, its pathophysiological mechanisms remain vague. There is still an urgent need for more effective treatments. Circular RNAs (circRNAs) are non-coding RNAs that can form covalently closed RNA circles. Through second-generation sequencing technology, microarray analysis, bioinformatics, and other technologies, recent studies have shown that a number of circRNAs are differentially expressed after traumatic brain injury (TBI) or spinal cord injury (SCI). These circRNAs play important roles in the proliferation, inflammation, and apoptosis in CNS post-traumatic injury. In this review, we summarize the expression and functions of circRNAs in CNS in recent studies, as well as the circRNA–miRNA–mRNA interaction networks. The potential clinical value of circRNAs as a therapeutic target is also discussed.
Collapse
Affiliation(s)
- Lvwan Xu
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Ye
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Luo S, Deng M, Xie Z, Li X, Huang G, Zhou Z. Circulating circular RNAs profiles associated with type 1 diabetes. Diabetes Metab Res Rev 2021; 37:e3394. [PMID: 32798322 DOI: 10.1002/dmrr.3394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
AIMS Circular RNAs (circRNAs) have recently been shown to exert important effects in human diseases. However, the roles of circRNAs in type 1 diabetes (T1D) are largely unknown. This study is to identify the circRNA expression profiles in the peripheral blood of patients with T1D and predict their potential regulatory mechanisms and coding potential. METHODS CircRNA expression profiles were detected by Arraystar human circRNA microarray. With real-time PCR validation, multiple bioinformatics approaches were used to explore their biological functions, construct the circRNA-miRNA-mRNA interactions, and predict circRNA coding potential. RESULTS A total of 93 differentially expressed circular transcripts were identified in T1D compared with controls, among which 30 were upregulated, and 63 were downregulated. Two circRNAs were identified to have significant differences by RT-PCR. Gene ontology analysis enriched terms such as cellular protein metabolic process, cytoplasm and zinc ion binding. The proposed molecular functions of these differentially expressed circRNAs, including cellular protein metabolic process, cytoplasm, and binding, may contribute to T1D. The most enriched pathways for these circRNAs were involved in protein processing in the endoplasmic reticulum. Hsa_circ_0072697 may be involved in 50 circRNA-miRNA-mRNA signalling pathways related to diabetes, such as circ_0072697-miR-15a-UBASH3A network. Furthermore, hsa_circ_0071224, hsa_circ_0002437, hsa_circ_0084429, hsa_circ_0072697, and hsa_circ_0000787 in T1D were considered to have the most coding potential involved in the pathogenesis of T1D. CONCLUSIONS These results showed that circRNAs are aberrantly expressed in the peripheral blood of patients with T1D and may play potential actions by interactions with miRNA and circRNA-derived peptides in the development of T1D.
Collapse
Affiliation(s)
- Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Min Deng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| |
Collapse
|
14
|
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020; 10:biom10121641. [PMID: 33291347 PMCID: PMC7762297 DOI: 10.3390/biom10121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors. Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs), and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE. In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis in SLE are also briefly described. We wish these critical reviews would be useful in the search for biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Autoimmunity/genetics
- Chemokines/genetics
- Chemokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- RNA, Circular/genetics
- RNA, Circular/immunology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, National Taiwan University School of Medicine, Taipei 10002, Taiwan
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hui-Ting Lee
- Mackay Memorial Hospital and Mackay College of Medicine, Taipei 10449, Taiwan;
| | - Cheng-Sung Lin
- Department of Thoracic Surgery, Ministry of Health and Welfare Taipei Hospital, New Taipei City 24213, Taiwan;
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
15
|
Cui G, Wang L, Huang W. Circular RNA HIPK3 regulates human lens epithelial cell dysfunction by targeting the miR-221-3p/PI3K/AKT pathway in age-related cataract. Exp Eye Res 2020; 198:108128. [PMID: 32681842 DOI: 10.1016/j.exer.2020.108128] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Circular RNA Homeodomain Interacting Protein Kinase 3 (circHIPK3) was found to involve in the pathogenesis of age-related cataract (ARC). Here, we further disclosed the related target genes and molecular mechanism of circHIPK3 in the ARC progression. The expression of circHIPK3, microRNA (miR)-221-3p was detected using the quantitative real-time polymerase chain reaction. Human lens epithelial cell (HLEC) proliferation and apoptosis were measured by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay and flow cytometry, respectively. Western blot was used to detect the levels of apoptosis-related proteins, and phosphoinositide 3-kinase (PI3K)/p-protein kinase B (AKT) pathway-related proteins. Levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-PX) were measured by kits. The interaction between miR-221-3p and circHIPK3 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. CircHIPK3 was down-regulated while miR-221-3p was up-regulated in human lens epithelium samples of ARC patients. CircHIPK3 up-regulation or miR-221-3p down-regulation mediated the promotion of proliferation, inhibition of apoptosis, decrease of MDA level as well as increase of GSH-PX level in HLECs. MiR-221-3p was a target of circHIPK3, and miR-221-3p overexpression reversed the protective action of circHIPK in HLEC functions. In addition, circHIPK3 activated PI3K/AKT pathway via regulating miR-221-3p, and silencing miR-221-3p protected HLECs from dysfunction by activating PI3K/AKT pathway. We demonstrated that circHIPK3 protected HLECs from dysfunction by regulating miR-221-3p/PI3K/AKT pathway, indicating a new insight into the pathogenesis of ARC and providing a potential therapeutic target for ARC.
Collapse
Affiliation(s)
- Gangfeng Cui
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, 317000, China.
| | - Ledan Wang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, 317000, China
| | - Wenjuan Huang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, 317000, China
| |
Collapse
|
16
|
Liang B, Li M, Deng Q, Wang C, Rong J, He S, Xiang Y, Zheng F. CircRNA ZNF609 in peripheral blood leukocytes acts as a protective factor and a potential biomarker for coronary artery disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:741. [PMID: 32647666 PMCID: PMC7333115 DOI: 10.21037/atm-19-4728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Circular RNAs (circRNAs) have been reported to aberrantly express in coronary artery disease (CAD). Due to their special structures, circRNAs have the potential to be specific and stable markers. We conducted this study to explore circZNF609's function in atherosclerosis and to evaluate its predictive values for CAD. Methods About 330 CAD patients and 209 controls were enrolled and the expression of circZNF609 in peripheral blood leukocytes (PBLs) was detected by quantitative real time polymerase chain reaction (RT-PCR). Spearman correlation, multivariate regression, multivariate logistic regression and receiver operating characteristic curve (ROC) were performed. Moreover, circZNF609 was overexpressed in mice macrophage RAW264.7 to investigate its influence on inflammatory cytokines. Finally, bioinformatics analysis was executed to excavate the potential downstream pathway of circZNF609. Results The expression level of circZNF609 in PBLs of CAD patients was significantly decreased compared with the controls (the fold changes of 0.4133, P<0.0001). The logistic regression analysis showed that decreased circZNF609 expressions were independently associated with increased risks of CAD. The area under the ROC curve was 0.761 (95% CI: 0.721-0.800, P<0.0001). Furthermore, the circZNF609 expression level was correlated with C-reactive protein (r=-0.138, P=0.026) and lymphocyte counts (r=0.16, P=0.01). After overexpression of circZNF609 in RAW264.7 cells, the expression level of IL-6 (P<0.001) and TNF-α (P<0.01) were significantly decreased and IL-10 was significantly increased (P<0.001). Bioinformatics analysis suggested that the abnormal expression of circZNF609 might probably sponge miRNA to modulate the inflammation cytokines. Conclusions CircRNA ZNF609 played an anti-inflammatory role and was an independent protective factor for CAD. It represented a moderate diagnostic value and might provide a new therapeutic target for CAD.
Collapse
Affiliation(s)
- Bin Liang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglan Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qianyun Deng
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chen Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jialing Rong
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siying He
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Xiang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
FcircSEC: An R Package for Full Length circRNA Sequence Extraction and Classification. Int J Genomics 2020; 2020:9084901. [PMID: 32566642 PMCID: PMC7285417 DOI: 10.1155/2020/9084901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/02/2020] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are formed by joining the 3′ and 5′ ends of RNA molecules. Identification of circRNAs is an important part of circRNA research. The circRNA prediction methods can predict the circRNAs with start and end positions in the chromosome but cannot identify the full-length circRNA sequences. We present an R package FcircSEC (Full Length circRNA Sequence Extraction and Classification) to extract the full-length circRNA sequences based on gene annotation and the output of any circRNA prediction tools whose output has a chromosome, start and end positions, and a strand for each circRNA. To validate FcircSEC, we have used three databases, circbase, circRNAdb, and plantcircbase. With information such as the chromosome and strand of each circRNA as the input, the identified sequences by FcircSEC are consistent with the databases. The novelty of FcircSEC is that it can take the output of state-of-the-art circRNA prediction tools as input and is applicable for human and other species. We also classify the circRNAs as exonic, intronic, and others. The R package FcircSEC is freely available.
Collapse
|
18
|
Fang X, Wen J, Sun M, Yuan Y, Xu Q. CircRNAs and its relationship with gastric cancer. J Cancer 2019; 10:6105-6113. [PMID: 31762820 PMCID: PMC6856571 DOI: 10.7150/jca.32927] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/18/2019] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs), as a type of tissue specific RNA with more stable structure than linear RNAs, was poorly understood on its correlation with gastric cancer (GC). In this review, we outline the synthesis and characteristics of circRNAs and generalize their categories and functions. Through comprehensive analysis of the reported results, we find that circRNAs not only participate in the regulation of gastric cancer (GC) cell biological behaviors, such as proliferation, invasion, migration and epithelial mesenchymal transition (EMT), but also are related to the clinicopathological features of GC such as tumor differentiation, TNM stage and metastasis, etc. According to the present screening and verification results, circRNAs are suggested to be used as biomarkers for the early diagnosis and prognosis prediction of GC, and those circRNAs involved in the genesis and development of GC have the potential as novel targets for the individualized treatment of GC.
Collapse
Affiliation(s)
- Xinxin Fang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China.,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Jing Wen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China.,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Mingjun Sun
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Liaoning Province, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Liaoning Province, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Liaoning Province, Shenyang 110001, China
| |
Collapse
|
19
|
West KA, Lagos D. Long Non-Coding RNA Function in CD4 + T Cells: What We Know and What Next? Noncoding RNA 2019; 5:ncrna5030043. [PMID: 31336952 PMCID: PMC6789709 DOI: 10.3390/ncrna5030043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
The non-coding genome has previously been regarded as "junk" DNA; however, emerging evidence suggests that the non-coding genome accounts for some of the greater biological complexity observed in mammals. Research into long non-coding RNAs (lncRNAs) has gathered speed in recent years, and a growing body of evidence has implicated lncRNAs in a vast range of cellular functions including gene regulation, chromosome organisation and splicing. T helper cells offer an ideal platform for the study of lncRNAs given they function as part of a complex cellular network and undergo remarkable and finely regulated gene expression changes upon antigenic stimulation. Using various knock down and RNA interaction studies several lncRNAs have been shown to be crucial for T helper cell differentiation, activation and function. Given that RNA targeting therapeutics are rapidly gaining attention, further understanding the mechanistic role of lncRNAs in a T helper context is an exciting area of research, as it may unearth a wide range of new candidate targets for treatment of CD4+ mediated pathologies.
Collapse
Affiliation(s)
- Katie A West
- York Biomedical Research Institute, University of York, Wentworth Way, York YO10 5DD, UK
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Dimitris Lagos
- York Biomedical Research Institute, University of York, Wentworth Way, York YO10 5DD, UK.
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
20
|
Circular RNAS: novel biomarkers of disease activity in systemic lupus erythematosus? Clin Sci (Lond) 2019; 133:1049-1052. [PMID: 31064795 DOI: 10.1042/cs20180826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that regulate gene expression by acting as competitive endogenous RNAs (ceRNAs) and modulating gene transcription. Several studies support the implication of circRNAs in a variety of human diseases, but research on the role of circRNAs in systemic lupus erythematosus (SLE) is lacking. In a study recently published in Clinical Science (2018), Zhang et al. identified hsa_circ_0012919 as a potential biomarker of disease activity in SLE patients. The authors observed different circRNA expression between SLE patients and healthy controls, an association with clinical variables and with the abnormal DNA methylation present in SLE CD4+ T cells. Finally, Zhang et al. demonstrated that hsa_circ_0012919 acts as a miRNA sponge for miR-125a-3p, regulating the gene expression of targets RANTES and KLF13 that are involved in the physiology and pathophysiology of acute and chronic inflammatory processes. These findings support the role of circRNAs in the pathophysiology of SLE.
Collapse
|
21
|
Zhang J, Hu H, Zhao Y, Zhao Y. CDR1as is overexpressed in laryngeal squamous cell carcinoma to promote the tumour's progression via miR-7 signals. Cell Prolif 2018; 51:e12521. [PMID: 30182381 DOI: 10.1111/cpr.12521] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/15/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To investigate the roles played by the circular RNA (circRNA) molecule ciRS-7 (CDR1as) and tumour suppressor miRNA-7 (miR-7) in laryngeal squamous cell carcinoma (LSCC). METHODS Specimens of LSCC tissue (n = 30) and corresponding relative normal tissue (n = 30) were collected to determine their levels and clinical significance of CDR1as/mir-7 expression. The CDR1as and miR-7 were overexpressed in LSCC cells to investigate its function and mechanism in vitro and in vivo. RESULTS Patients with high TNM stages, poorly differentiated tumours, lymph node metastases and poor prognosis had high CDR1as levels but low miR-7 levels. CDR1 expression was negatively associated with miR-7 expression in LSCC. Overexpression of CDR1as in vitro enhanced cell vitality, and promoted the proliferation, migration, and invasion of two LSCC cell lines (Hep2 and AMC-HN-8.) However, these effects could be abrogated by knockdown of CDR1as or the forced expression of miR-7. Mechanistically, overexpressed CDR1 molecules functioned as miR-7 sponges and upregulated the key targets of miR-7, CCNE1, and PIK3CD in Hep2 and AMC-HN-8 cells. In vivo studies demonstrated the tumourigenic role of CDR1as. Overexpression of CDR1as alone promoted tumour growth and increased expression of the proliferation indices ki-67, CCNE1, and PIK3CD. Although the tumour suppressor miR-7 effectively inhibited the tumour growth, this effect could be counteracted by co-treatment with CDR1as in vivo. CONCLUSION CDR1as is an oncogene that promotes LSCC progression by regulating miR-7 signals.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China.,Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of the Medical University of Guangzhou, Guangzhou, China
| | - Huayong Hu
- Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of the Medical University of Guangzhou, Guangzhou, China
| | - Yaoxin Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of the Medical University of Guangzhou, Guangzhou, China
| | - Yulin Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
22
|
Li L, Zhu Z, Zhao W, Tao S, Li B, Xu S, Wang J, Zhang M, Wu J, Leng R, Fan Y, Pan H, Ye D. Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology 2018; 155:137-149. [PMID: 29700819 PMCID: PMC6099170 DOI: 10.1111/imm.12940] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) represent a class of non-coding RNAs that form covalently closed RNA circles with extensive expression and conservation in mammals. Circular RNAs regulate gene expression through acting as competitive endogenous RNAs (ceRNAs) and modulating gene transcription. Accumulating evidence supports the implication of circRNAs in a variety of human diseases, but studies of circRNA role in systemic lupus erythematosus (SLE) are lacking. The present study measured the circRNA expression profiles in T cells from patients with SLE and healthy controls with human circRNA microarray and identified 127 differentially expressed circRNAs in SLE patients. Down-regulation of hsa_circ_0045272 in SLE T cells was verified with quantitative PCR. Jurkat cells with stable hsa_circ_0045272 knockdown were generated using specific lentiviral short hairpin RNA for functional studies. Flow cytometric analysis indicated that hsa_circ_0045272 knockdown significantly up-regulated the early apoptosis of Jurkat cells. Meanwhile, ELISA showed that hsa_circ_0045272 knockdown significantly enhanced interleukin-2 production of activated Jurkat cells. Then, ceRNAs were predicted for hsa_circ_0045272 and the significant down-regulation of two mRNAs predicted as ceRNAs, NM_003466 (PAX8) and NM_015177 (DTX4), but not their corresponding proteins, was validated. Furthermore, dual luciferase reporter assay indicated binding of hsa_circ_0045272 with hsa-miR-6127. Circular RNA-mRNA co-expression networks showed the correlation of circRNAs with mRNAs and provided additional clues to circRNA functions. Our study demonstrated dysregulated circRNAs in SLE and revealed the function of hsa_circ_0045272 in negatively regulating apoptosis and interleukin-2 secretion and its potential mechanism. The implication of hsa_circ_0045272 and other abnormal circRNAs in SLE merits further investigation.
Collapse
Affiliation(s)
- Lian‐Ju Li
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Zhi‐Wei Zhu
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Wei Zhao
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Sha‐Sha Tao
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Bao‐Zhu Li
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Shu‐Zhen Xu
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Jie‐Bing Wang
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Ming‐Yue Zhang
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
- Department of Medical Record RoomAffiliated Fuyang Hospital of Anhui Medical UniversityFuyangChina
| | - Jun Wu
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Rui‐Xue Leng
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Yin‐Guang Fan
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Hai‐Feng Pan
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| | - Dong‐Qing Ye
- Department of Epidemiology and BiostatisticsSchool of Public HealthAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Major Autoimmune DiseasesHefeiAnhuiChina
| |
Collapse
|
23
|
|
24
|
Sun JF. Roles of Circular RNAs And Their Interactions With MicroRNAs in Human Disorders. ACTA ACUST UNITED AC 2018. [DOI: 10.31491/csrc.2018.6.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA 2018; 4:FSO314. [PMID: 30112184 PMCID: PMC6088266 DOI: 10.4155/fsoa-2018-0036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs characterized with closed loop structures without 3′ and 5′ polar ends. They can roughly be divided into exonic circRNAs, exon–intron circRNAs and circular intronic RNAs. CircRNAs are characterized with stability, prevalence, specificity and conservation, which arouse great interest in circRNAs as disease biomarkers. Their abilities to sponge to miRNAs, cis-regulate parent genes, bind to proteins and encode proteins endow circRNAs a critical role of regulation in eukaryotic cells. This concise review focuses on circRNAs as functional biomarkers and therapeutic targets in both tumor and nontumorous diseases. Although they were discovered in 1970s, circular RNAs (circRNAs) have attracted great interest only relatively recently. Instead of genome ‘junk matters’, circRNAs are now considered as promising biomarkers and treatment targets. CircRNAs are involved in numerous cancer-related and noncancer diseases, such as lung cancer, gastric cancer, cardiovascular diseases, diabetes mellitus and so on. This review outlines the classification, characterization and function of circRNAs, with a specific focus on recent studies concerning the role of circRNAs in human diseases.
Collapse
|
26
|
Zhou R, Wu Y, Wang W, Su W, Liu Y, Wang Y, Fan C, Li X, Li G, Li Y, Xiong W, Zeng Z. Circular RNAs (circRNAs) in cancer. Cancer Lett 2018; 425:134-142. [PMID: 29625140 DOI: 10.1016/j.canlet.2018.03.035] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that do not have 5' end caps or 3' end poly (A) tails. There are more than one hundred thousand genes that encode circRNAs. Clinical data show that there are differences in the expression of circRNAs in a variety of diseases, including cancer, suggesting that circRNA has a regulatory effect on some diseases. Further studies reveal that circRNA can be used as an endogenous competitive RNA, thereby regulating the proliferation, invasion or other physiological activities of tumor cells. In addition, some circRNAs located in the nucleus can regulate the transcription of the parental gene by binding to RNA polymerase II. circRNA can also combine with proteins to influence the cell cycle. Furthermore, recent studies have shown that circRNA can encode proteins, similarly to mRNA. circRNAs are found extensively in human cells and have tissue specificity. They have the potential to be used in clinical applications as tumor markers and therapeutic targets.
Collapse
Affiliation(s)
- Ruoyu Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuwei Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenxi Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjia Su
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yicong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Xu Z, Li P, Fan L, Wu M. The Potential Role of circRNA in Tumor Immunity Regulation and Immunotherapy. Front Immunol 2018; 9:9. [PMID: 29403493 PMCID: PMC5786515 DOI: 10.3389/fimmu.2018.00009] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) can be divided into circular non-coding RNAs (circRNAs) and linear ncRNAs. ncRNAs exist in different cell types, including normal cells, tumor cells and immunocytes. Linear ncRNAs, such as long ncRNAs and microRNAs, have been found to play important roles in the regulation of tumor immunity and immunotherapy; however, the functions of circRNAs in tumor immunity and immunotherapy are less known. Here, we review the current status of ncRNAs in the regulation of tumor immunity and immunotherapy and emphatically discuss the potential roles of circRNAs as tumor antigens in the regulation of tumor immunity and immunotherapy.
Collapse
Affiliation(s)
- Zihao Xu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China
| | - Li Fan
- Department of Biochemistry, University of California Riverside, Riverside, CA, United States
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, China.,Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
28
|
Liu X, Zhong Y, Li J, Shan A. Circular RNA circ-NT5C2 acts as an oncogene in osteosarcoma proliferation and metastasis through targeting miR-448. Oncotarget 2017; 8:114829-114838. [PMID: 29383123 PMCID: PMC5777735 DOI: 10.18632/oncotarget.22162] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous noncoding RNA which have been verified to participate in numerous pathophysiological processes. However, the underlying role of circRNAs in osteosarcoma tissue is still unidentified. Our study aims to investigate the circRNA expression profiles in osteosarcoma tissue and investigate the physiological functions of circRNAs. Human circRNAs microarray analysis showed that 785 differently expressed circRNAs were distinguished in osteosarcoma tissue and adjacent non-tumor tissue with 2 fold change. Circ-NT5C2 was validated to be up-regulated expressed in 52 pairs of osteosarcoma tissue and cell lines. Furthermore, the enforced expression of circ-NT5C2 could act as a valuable diagnostic marker for osteosarcoma detection with AUC (area under the ROC curve) value of 0.753. Functional validation experiments verified that circ-NT5C2 silencing suppressed the proliferation and invasion, and promoted apoptosis of osteosarcoma cells in vitro. In vivo, circ-NT5C2 silencing inhibited the tumor growth. Bioinformatics analysis and rescue experiments indicated that circ-NT5C2 sponged miR-448, which was confirmed by luciferase reporter assay and RT-PCR assay. Overall, our study investigates the circRNAs expression profiles and determines the function of circ-NT5C2 in osteosarcoma tumorigenesis, which might serve as a novel therapeutic target of osteosarcoma patients.
Collapse
Affiliation(s)
- Xunfa Liu
- Department of Emergency, Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, 518020, China
| | - Yuanbo Zhong
- Department of Emergency, Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, 518020, China
| | - Jifeng Li
- College of Basic Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Aijun Shan
- Department of Emergency, Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, 518020, China
| |
Collapse
|
29
|
Li LJ, Fan YG, Leng RX, Pan HF, Ye DQ. Potential link between m 6A modification and systemic lupus erythematosus. Mol Immunol 2017; 93:55-63. [PMID: 29145159 DOI: 10.1016/j.molimm.2017.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
Abstract
The field of m6A modification and epitranscriptomics has recently attracted much attention. More methods allowing for precise m6A site profiling and location are developed and crucial players of m6A modification machinery are increasingly identified. Although some challenges remain, m6A modification is found to modulate almost all aspects of RNA metabolism, such as splicing, stability, structure, translation, and export. Thus, m6A modification adds a new layer of post-transcriptional gene expression regulation, and it is implicated in T cell response to HIV infection, type I interferon production, and T cell differentiation and homeostasis. Moreover, evidence supporting its involvement in various human diseases including cancers is accumulating. Given the role of m6A modification in gene expression regulation and immune response, it invites the speculation that m6A modification may justify the pathogenesis of systemic lupus erythematosus (SLE) and take part in the initiation and progression of SLE. In this review, we introduce the widespread existence of m6A modification and briefly discuss components of m6A modification machinery in mammals. We mainly summarize the studies reporting the mechanisms of m6A modification in gene expression regulation through modulating pre-mRNA splicing, mRNA stability, RNA structure, translation, and pri-miRNA processing. Biological functions related to immune response of m6A modification and the implication of m6A modification in cancers are highlighted. In the end, we surmise the potential link between m6A modification and SLE.
Collapse
Affiliation(s)
- Lian-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
30
|
Li LJ, Leng RX, Fan YG, Pan HF, Ye DQ. Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res 2017; 361:1-8. [PMID: 29031633 DOI: 10.1016/j.yexcr.2017.10.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/17/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023]
Abstract
Mammalian genome is pervasively transcribed, producing large number of noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), primary miRNAs (pri-miRNA), and circular RNAs (circRNAs). The translation of these ncRNAs has long been overlooked. Increasing studies, however, based on ribosome profiling in various organisms provide important clues to unanticipated translation potential of lncRNAs. Moreover, a few functional peptides encoded by lncRNAs and pri-miRNAs underline the significance of their translation. Recently, several novel researches also evidence the translation of endogenous circRNAs. Given the functional significance exemplified by peptides translated by some ncRNAs and their pervasive translation, it is not too far-fetched to image that abnormal translation of ncRNAs may contribute to human diseases. Through challenging, deciphering ncRNA translation is required for comprehensive understanding of biology and medicine. In this review, we firstly present evidence concerning translation potential of lncRNAs and go on to introduce a few functional short peptides encoded by lncRNAs. Then, salient observations showing translation of pri-miRNAs and circRNAs are described in detail. We end by discussing the impact of ncRNA translation beyond producing peptides and referring briefly to the potential role of abnormal ncRNA translation in human diseases.
Collapse
Affiliation(s)
- Lian-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
31
|
Li LJ, Zhao W, Tao SS, Li J, Xu SZ, Wang JB, Leng RX, Fan YG, Pan HF, Ye DQ. Comprehensive long non-coding RNA expression profiling reveals their potential roles in systemic lupus erythematosus. Cell Immunol 2017. [PMID: 28622785 DOI: 10.1016/j.cellimm.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs can regulate gene transcription, modulate protein function, and act as competing endogenous RNA. Yet, their roles in systemic lupus erythematosus remain to be elucidated. We determined the expression profiles of lncRNAs in T cells of SLE patients and healthy controls using microarrays. Up to 1935 lncRNAs and 1977 mRNAs were differentially expressed. QRT-PCR showed downregulated uc001ykl.1 and ENST00000448942 in SLE patients. Expression of uc001ykl.1 correlated with erythrocyte sedimentation rate (ESR) and C-reactive protein, whereas ENST00000448942 level correlated with ESR and anti-Sm antibodies. Short time-series expression miner analysis revealed some lncRNAs whose expressions might correlate with disease activity of SLE patients. Coding-non-coding gene coexpression analyses showed differential lncRNAs might operate via modulating expressions of their correlated, relevant mRNAs in SLE. Differential lncRNAs might also function through their ceRNAs. Our study established that the aberrant expression profiles of lncRNAs may play a role in SLE and thus warrant further investigation.
Collapse
Affiliation(s)
- Lian-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Wei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Jie-Bing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China.
| |
Collapse
|
32
|
Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis. Biochem Biophys Res Commun 2017; 490:104-110. [PMID: 28571741 DOI: 10.1016/j.bbrc.2017.05.164] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are a group of non-protein-coding RNAs generated from back splicing. Emerging evidence has demonstrated its vital regulation on angiogenesis. However, the underlying mechanism responsible for circRNAs effects on vascular endothelial cells is still unclear. In the present study, we screened the expression profiles and investigated the physiological role of circRNAs in hypoxia-induced human umbilical vein endothelial cells (HUVECs). Using circRNA microarray analysis, we identified 36 circRNAs that were significantly dysregulated including 14 down-regulated circRNAs and 22 up-regulated with 2-fold change (P < 0.05). From the over-expressed circRNAs, hsa_circ_0010729 was selected as candidate circRNA and which was validated to be significantly up-regulated using RT-PCR. In loss-of-function experiments of HUVECs, hsa_circ_0010729 knockdown suppressed the proliferation and migration ability and enhanced apoptosis. Bioinformatic prediction and luciferase assay revealed that hsa_circ_0010729 and hypoxia inducible factor 1 alpha (HIF-1α) were targeted by miR-186. Validation experiments verified that hsa_circ_0010729 was co-expressed with HIF-1α, being negatively correlated with miR-186. Moreover, rescue experiments demonstrated that miR-186 inhibitor could reverse the role of hsa_circ_0010729 knockdown on HUVECs progression. Overall, the present study identifies the crucial regulation of hsa_circ_0010729 on vascular endothelial cell proliferation and apoptosis via targeting miR-186/HIF-1α axis.
Collapse
|
33
|
Abstract
High-throughput technologies have revolutionized medical research. The advent of genotyping arrays enabled large-scale genome-wide association studies and methods for examining global transcript levels, which gave rise to the field of “integrative genetics”. Other omics technologies, such as proteomics and metabolomics, are now often incorporated into the everyday methodology of biological researchers. In this review, we provide an overview of such omics technologies and focus on methods for their integration across multiple omics layers. As compared to studies of a single omics type, multi-omics offers the opportunity to understand the flow of information that underlies disease.
Collapse
Affiliation(s)
- Yehudit Hasin
- Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA.,Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA
| | - Marcus Seldin
- Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA
| | - Aldons Lusis
- Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA. .,Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA.
| |
Collapse
|
34
|
Li LJ, Zhao W, Tao SS, Leng RX, Fan YG, Pan HF, Ye DQ. Competitive endogenous RNA network: potential implication for systemic lupus erythematosus. Expert Opin Ther Targets 2017; 21:639-648. [DOI: 10.1080/14728222.2017.1319938] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|