1
|
Zhao Z, Liu W, Luo B. The Oncogenic role of Lysyl Oxidase-Like 1 (LOXL1): Insights into cancer progression and therapeutic potential. Gene 2025; 947:149312. [PMID: 39952484 DOI: 10.1016/j.gene.2025.149312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Lysyl oxidase-like-1 (LOXL1) is a copper-dependent amine oxidase that maintains the structural integrity of the extracellular matrix (ECM) by catalyzing the cross-linking of collagen and elastin. However, aberrations in LOXL1 expression can contribute to diseases like glaucoma, tissue fibrosis, and cancer. LOXL1 has been found to be overexpressed in various malignancies, playing a pivotal role in tumor growth and metastasis. Although some studies suggest tumor-suppressive attributes of LOXL1, its role in tumorigenesis remains controversial. Research on LOXL1 has been primarily focused on pseudoexfoliation syndrome/glaucoma, with limited reviews on its impact on cancer. This review aims to explore LOXL1 comprehensively, including its structure, biological effects, and regulatory processes. Emphasis is placed on understanding the relationship between LOXL1 and tumorigenesis, specifically how LOXL1 influences tumor microenvironment remodeling, tumorigenesis, and metastasis. The review also discusses potential therapeutic strategies targeting LOXL1 for anti-fibrosis and anti-tumor interventions.
Collapse
Affiliation(s)
- Zixiu Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Dube CT, Gilbert HTJ, Rabbitte N, Baird P, Patel S, Herrera JA, Baricevic-Jones I, Unwin RD, Chan D, Gnanalingham K, Hoyland JA, Richardson SM. Proteomic profiling of human plasma and intervertebral disc tissue reveals matrisomal, but not plasma, biomarkers of disc degeneration. Arthritis Res Ther 2025; 27:28. [PMID: 39930483 PMCID: PMC11809052 DOI: 10.1186/s13075-025-03489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a common cause of low back pain, and the most symptomatic patients with neural compression need surgical intervention to relieve symptoms. Current techniques used to diagnose IVD degeneration, such as magnetic resonance imaging (MRI), do not detect changes in the tissue extracellular matrix (ECM) as degeneration progresses. Improved techniques, such as a combination of tissue and blood biomarkers, are needed to monitor the progression of IVD degeneration for more effective treatment plans. METHODS To identify tissue and blood biomarkers associated with degeneration progression, we histologically graded 35 adult human degenerate IVD tissues and matched plasma from the individuals into two groups: mild degenerate and severe degenerate. Mass spectrometry was utilised to characterise proteomic differences in tissue and plasma between the two groups. Top differentially distributed proteins were further validated using immunohistochemistry and qRT-PCR. Additionally, correlational analyses were conducted to define similarities and differences between tissue and plasma protein changes in individuals with mild and severe IVD degeneration. RESULTS Our data revealed that the abundance of 31 proteins was significantly increased in severe degenerated IVD tissues compared to mild. Functional analyses showed that more than 40% of these proteins were matrisome-related, indicating differences in ECM protein composition between severe and mild degenerate IVD tissues. We confirmed adipocyte enhancer-binding protein 1 (AEBP1) as one of the most significantly enriched core matrisome genes and proteins as degeneration progressed. Compared to others, AEBP1 protein levels best distinguished between mild and severe degenerated IVD tissues with an area under the curve score of 0.768 (95% CI: 0.60-0.93). However, we found that protein changes from associated plasma exhibited a weak relationship with histological grading and AEBP1 tissue levels. Given that systemic plasma changes are complex, a larger sample cohort may be required to identify patterns in blood relating to IVD degeneration progression. CONCLUSIONS In this study, we have identified AEBP1 as a tissue marker for monitoring the severity of disc degeneration in humans. Further work to link alterations in tissue AEBP1 levels to changes in blood-related proteins will be beneficial for detailed monitoring of IVD degeneration thereby enabling more personalised treatment approaches.
Collapse
Affiliation(s)
- Christabel Thembela Dube
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Hamish T J Gilbert
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Guy Hilton Research Centre, School of Life Sciences, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Niamh Rabbitte
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Pauline Baird
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sonal Patel
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jeremy A Herrera
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ivona Baricevic-Jones
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Richard D Unwin
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Danny Chan
- School of Biomedical Sciences, Faculty of Medicine Building, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kanna Gnanalingham
- Department of Neurosurgery, Manchester Academy of Health Science Centre, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Park SH, Choi SH, Park HY, Ko J, Yoon JS. Role of Lysyl Oxidase-Like Protein 3 in the Pathogenesis of Graves' Orbitopathy in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39546293 DOI: 10.1167/iovs.65.13.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose The lysyl oxidase (LOX) family has been implicated in the pathogenesis of diseases caused by inflammation and fibrosis. Therefore, we aimed to examine the role of lysyl oxidase-like protein 3 (LOXL3) in Graves' orbitopathy (GO) pathogenesis and its potential as a treatment target. Methods Quantitative real-time polymerase chain reaction compared the transcript levels of the five LOX family subtypes in orbital tissue explants obtained from patients with GO (n = 18) and healthy controls (n = 15). The effects of LOXL3 inhibition on interleukin (IL)-1β-induced proinflammatory cytokines, transforming growth factor (TGF)-β-induced profibrotic proteins, intracellular signaling molecules, and adipogenic markers were evaluated using Western blotting. Adipogenic differentiation was identified using Oil Red O staining. Results LOX and LOXL3 transcript levels were high in GO tissues. Stimulation with IL-1β, TGF-β, and insulin-like growth factor-1 significantly increased LOXL3 messenger RNA expression in GO fibroblasts. Furthermore, silencing LOXL3 attenuated the IL-1β-induced production of proinflammatory cytokines (IL-6, IL-8, and intercellular adhesion molecule-1) and TGF-β-induced production of profibrotic proteins (fibronectin, collagen 1α, and alpha-smooth muscle actin). It also reduced the IL-1β or TGF-β-induced expression of phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells, protein kinase B, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Additionally, LOXL3 silencing suppressed adipocyte differentiation and the expression of adipogenic transcription factors (leptin, AP-2, peroxisome proliferator-activated receptor gamma, and CCAAT/enhancer-binding protein). Conclusions LOXL3 is crucial in GO pathogenesis. LOXL3 inhibition reduced inflammatory cytokine production, fibrotic protein expression, and fibroblast differentiation into adipocytes. This study highlights LOXL3 as a potential therapeutic target for GO.
Collapse
Affiliation(s)
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Young Park
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Yin X, Wei Y, Qin H, Zhao J, Chen Y, Yao S, Li N, Xiong A, Wang D, Zhang P, Liu P, Zeng H, Chen Y. Oxygen tension regulating hydrogels for vascularization and osteogenesis via sequential activation of HIF-1α and ERK1/2 signaling pathways in bone regeneration. BIOMATERIALS ADVANCES 2024; 161:213893. [PMID: 38796955 DOI: 10.1016/j.bioadv.2024.213893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Angiogenesis plays a crucial role in bone regeneration. Hypoxia is a driving force of angiogenesis at the initial stage of tissue repair. The hypoxic microenvironment could activate the hypoxia-inducible factor (HIF)-1α signaling pathway in cells, thereby enhancing the proliferation, migration and pro-angiogenic functions of stem cells. However, long-term chronic hypoxia could inhibit osteogenic differentiation and even lead to apoptosis. Therefore, shutdown of the HIF-1α signaling pathway and providing oxygen at later stage probably facilitate osteogenic differentiation and bone regeneration. Herein, an oxygen tension regulating hydrogel that sequentially activate and deactivate the HIF-1α signaling pathway were prepared in this study. Its effect and mechanism on stem cell differentiation were investigated both in vitro and in vivo. We proposed a gelatin-based hydrogel capable of sequentially delivering a hypoxic inducer (copper ions) and oxygen generator (calcium peroxide). The copper ions released from the hydrogels significantly enhanced cell viability and VEGF secretion of BMSCs via upregulating HIF-1α expression and facilitating its translocation into the nucleus. Additionally, calcium peroxide promoted alkaline phosphatase activity, osteopontin secretion, and calcium deposition through the activation of ERK1/2. Both Cu2+ and calcium peroxide demonstrated osteogenic promotion individually, while their synergistic effect within the hydrogels led to a superior osteogenic effect by potentially activating the HIF-1α and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Xianzhen Yin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yihao Wei
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jin Zhao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sen Yao
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Nan Li
- Department of Stomatology, Shenzhen People's Hospital (Second Clinical Medical School of Jinan University, First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, China
| | - Ao Xiong
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
5
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
6
|
Kumari S, Kumar P. Identification and characterization of putative biomarkers and therapeutic axis in Glioblastoma multiforme microenvironment. Front Cell Dev Biol 2023; 11:1236271. [PMID: 37538397 PMCID: PMC10395518 DOI: 10.3389/fcell.2023.1236271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
Non-cellular secretory components, including chemokines, cytokines, and growth factors in the tumor microenvironment, are often dysregulated, impacting tumorigenesis in Glioblastoma multiforme (GBM) microenvironment, where the prognostic significance of the current treatment remains unsatisfactory. Recent studies have demonstrated the potential of post-translational modifications (PTM) and their respective enzymes, such as acetylation and ubiquitination in GBM etiology through modulating signaling events. However, the relationship between non-cellular secretory components and post-translational modifications will create a research void in GBM therapeutics. Therefore, we aim to bridge the gap between non-cellular secretory components and PTM modifications through machine learning and computational biology approaches. Herein, we highlighted the importance of BMP1, CTSB, LOX, LOXL1, PLOD1, MMP9, SERPINE1, and SERPING1 in GBM etiology. Further, we demonstrated the positive relationship between the E2 conjugating enzymes (Ube2E1, Ube2H, Ube2J2, Ube2C, Ube2J2, and Ube2S), E3 ligases (VHL and GNB2L1) and substrate (HIF1A). Additionally, we reported the novel HAT1-induced acetylation sites of Ube2S (K211) and Ube2H (K8, K52). Structural and functional characterization of Ube2S (8) and Ube2H (1) have identified their association with protein kinases. Lastly, our results found a putative therapeutic axis HAT1-Ube2S(K211)-GNB2L1-HIF1A and potential predictive biomarkers (CTSB, HAT1, Ube2H, VHL, and GNB2L1) that play a critical role in GBM pathogenesis.
Collapse
|
7
|
Laurentino TDS, Soares RDS, Marie SKN, Oba-Shinjo SM. Correlation of Matrisome-Associatted Gene Expressions with LOX Family Members in Astrocytomas Stratified by IDH Mutation Status. Int J Mol Sci 2022; 23:ijms23179507. [PMID: 36076905 PMCID: PMC9455728 DOI: 10.3390/ijms23179507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor cell infiltrative ability into surrounding brain tissue is a characteristic of diffusely infiltrative astrocytoma and is strongly associated with extracellular matrix (ECM) stiffness. Collagens are the most abundant ECM scaffolding proteins and contribute to matrix organization and stiffness. LOX family members, copper-dependent amine oxidases, participate in the collagen and elastin crosslinking that determine ECM tensile strength. Common IDH mutations in lower-grade gliomas (LGG) impact prognosis and have been associated with ECM stiffness. We analyzed the expression levels of LOX family members and matrisome-associated genes in astrocytoma stratified by malignancy grade and IDH mutation status. A progressive increase in expression of all five LOX family members according to malignancy grade was found. LOX, LOXL1, and LOXL3 expression correlated with matrisome gene expressions. LOXL1 correlations were detected in LGG with IDH mutation (IDHmut), LOXL3 correlations in LGG with IDH wild type (IDHwt) and strong LOX correlations in glioblastoma (GBM) were found. These increasing correlations may explain the increment of ECM stiffness and tumor aggressiveness from LGG-IDHmut and LGG-IDHwt through to GBM. The expression of the mechanosensitive transcription factor, β-catenin, also increased with malignancy grade and was correlated with LOXL1 and LOXL3 expression, suggesting involvement of this factor in the outside–in signaling pathway.
Collapse
|
8
|
Wang T, Guo Y, Liu S, Zhang C, Cui T, Ding K, Wang P, Wang X, Wang Z. KLF4, a Key Regulator of a Transitive Triplet, Acts on the TGF-β Signaling Pathway and Contributes to High-Altitude Adaptation of Tibetan Pigs. Front Genet 2021; 12:628192. [PMID: 33936161 PMCID: PMC8082500 DOI: 10.3389/fgene.2021.628192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Tibetan pigs are native mammalian species on the Tibetan Plateau that have evolved distinct physiological traits that allow them to tolerate high-altitude hypoxic environments. However, the genetic mechanism underlying this adaptation remains elusive. Here, based on multitissue transcriptional data from high-altitude Tibetan pigs and low-altitude Rongchang pigs, we performed a weighted correlation network analysis (WGCNA) and identified key modules related to these tissues. Complex network analysis and bioinformatics analysis were integrated to identify key genes and three-node network motifs. We found that among the six tissues (muscle, liver, heart, spleen, kidneys, and lungs), lung tissue may be the key organs for Tibetan pigs to adapt to hypoxic environment. In the lung tissue of Tibetan pigs, we identified KLF4, BCL6B, EGR1, EPAS1, SMAD6, SMAD7, KDR, ATOH8, and CCN1 genes as potential regulators of hypoxia adaption. We found that KLF4 and EGR1 genes might simultaneously regulate the BCL6B gene, forming a KLF4-EGR1-BCL6B complex. This complex, dominated by KLF4, may enhance the hypoxia tolerance of Tibetan pigs by mediating the TGF-β signaling pathway. The complex may also affect the PI3K-Akt signaling pathway, which plays an important role in angiogenesis caused by hypoxia. Therefore, we postulate that the KLF4-EGR1-BCL6B complex may be beneficial for Tibetan pigs to survive better in the hypoxia environments. Although further molecular experiments and independent large-scale studies are needed to verify our findings, these findings may provide new details of the regulatory architecture of hypoxia-adaptive genes and are valuable for understanding the genetic mechanism of hypoxic adaptation in mammals.
Collapse
Affiliation(s)
- Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tongyan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Kun Ding
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Peng Wang
- HeiLongJiang Provincial Husbandry Department, Harbin, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Childebayeva A, Goodrich JM, Leon-Velarde F, Rivera-Chira M, Kiyamu M, Brutsaert TD, Dolinoy DC, Bigham AW. Genome-Wide Epigenetic Signatures of Adaptive Developmental Plasticity in the Andes. Genome Biol Evol 2020; 13:5981114. [PMID: 33185669 PMCID: PMC7859850 DOI: 10.1093/gbe/evaa239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 01/03/2023] Open
Abstract
High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood. We performed an epigenome-wide DNA methylation association study based on whole blood from 113 Peruvian Quechua with differential lifetime exposures to high altitude (>2,500) and recruited based on a migrant study design. We identified two significant differentially methylated positions (DMPs) and 62 differentially methylated regions (DMRs) associated with high-altitude developmental and lifelong exposure statuses. DMPs and DMRs were found in genes associated with hypoxia-inducible factor pathway, red blood cell production, blood pressure, and others. DMPs and DMRs associated with fractional exhaled nitric oxide also were identified. We found a significant association between EPAS1 methylation and EPAS1 SNP genotypes, suggesting that local genetic variation influences patterns of methylation. Our findings demonstrate that DNA methylation is associated with early developmental and lifelong high-altitude exposures among Peruvian Quechua as well as altitude-adaptive phenotypes. Together these findings suggest that epigenetic mechanisms might be involved in adaptive developmental plasticity to high altitude. Moreover, we show that local genetic variation is associated with DNA methylation levels, suggesting that methylation associated SNPs could be a potential avenue for research on genetic adaptation to hypoxia in Andeans.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan.,Department of Environmental Health Sciences, School of Public Health, University of Michigan.,Department of Archaeogenetics, Max Planck Institute for the Study of Human History, Jena, Germany
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan
| | - Fabiola Leon-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Rivera-Chira
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan.,Department of Nutritional Sciences, School of Public Health, University of Michigan
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles
| |
Collapse
|
10
|
Oh YS, Choi MH, Shin JI, Maza PAMA, Kwak JY. Co-Culturing of Endothelial and Cancer Cells in a Nanofibrous Scaffold-Based Two-Layer System. Int J Mol Sci 2020; 21:ijms21114128. [PMID: 32531897 PMCID: PMC7312426 DOI: 10.3390/ijms21114128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is critical for local tumor growth. This study aimed to develop a three-dimensional two-layer co-culture system to investigate effects of cancer cells on the growth of endothelial cells (ECs). Poly(ε-caprolactone) (PCL) nanofibrous membranes were generated via electrospinning of PCL in chloroform (C-PCL-M) and chloroform and dimethylformamide (C/DMF-PCL-M). We assembled a two-layer co-culture system using C-PCL-M and C/DMF-PCL-M for EC growth in the upper layer with co-cultured cancer cells in the lower layer. In the absence of vascular endothelial growth factor (VEGF), growth of bEND.3 ECs decreased on C/DMF-PCL-M but not on C-PCL-M with time. Growth of bEND.3 cells on C/DMF-PCL-M was enhanced through co-culturing of CT26 cancer cells and enhanced growth of bEND.3 cells was abrogated with anti-VEGF antibodies and sorafenib. However, EA.hy926 ECs displayed steady growth and proliferation on C/DMF-PCL-M, and their growth was not further increased through co-culturing of cancer cells. Moreover, chemical hypoxia in CT26 cancer cells upon treatment with CoCl2 enhanced the growth of co-cultured bEND.3 cells in the two-layer system. Thus, EC growth on the nanofibrous scaffold is dependent on the types of ECs and composition of nanofibers and this co-culture system can be used to analyze EC growth induced by cancer cells.
Collapse
Affiliation(s)
- Ye-Seul Oh
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Min-Ho Choi
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
- Immune Network Pioneer Research Center & 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Korea
| | - Jung-In Shin
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Perry Ayn Mayson A. Maza
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
- Immune Network Pioneer Research Center & 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5064
| |
Collapse
|
11
|
Greene AG, Eivers SB, Dervan EWJ, O'Brien CJ, Wallace DM. Lysyl Oxidase Like 1: Biological roles and regulation. Exp Eye Res 2020; 193:107975. [PMID: 32070696 DOI: 10.1016/j.exer.2020.107975] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Lysyl Oxidase Like 1 (LOXL1) is a gene that encodes for the LOXL1 enzyme. This enzyme is required for elastin biogenesis and collagen cross-linking, polymerising tropoelastin monomers into elastin polymers. Its main role is in elastin homeostasis and matrix remodelling during injury, fibrosis and cancer development. Because of its vast range of biological functions, abnormalities in LOXL1 underlie many disease processes. Decreased LOXL1 expression is observed in disorders of elastin such as Cutis Laxa and increased expression is reported in fibrotic disease such as Idiopathic Pulmonary Fibrosis. LOXL1 is also downregulated in the lamina cribrosa in pseudoexfoliation glaucoma and genetic variants in the LOXL1 gene have been linked with an increased risk of developing pseudoexfoliation glaucoma and pseudoexfoliation syndrome. However the two major risk alleles are reversed in certain ethnic groups and are present in a large proportion of the normal population, implying complex genetic and environmental regulation is involved in disease pathogenesis. It also appears that the non-coding variants in intron 1 of LOXL1 may be involved in the regulation of LOXL1 expression. Gene alteration may occur via a number of epigenetic and post translational mechanisms such as DNA methylation, long non-coding RNAs and microRNAs. These may represent future therapeutic targets for disease. Environmental factors such as hypoxia, oxidative stress and ultraviolet radiation exposure alter LOXL1 expression, and it is likely a combination of these genetic and environmental factors that influence disease development and progression. In this review, we discuss LOXL1 properties, biological roles and regulation in detail with a focus on pseudoexfoliation syndrome and glaucoma.
Collapse
Affiliation(s)
- Alison G Greene
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland.
| | - Sarah B Eivers
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| | - Edward W J Dervan
- Dept. of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Colm J O'Brien
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland; Dept. of Ophthalmology, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Deborah M Wallace
- UCD Clinical Research Centre, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
12
|
Swaminathan G, Krishnamurthy VK, Sridhar S, Robson DC, Ning Y, Grande-Allen KJ. Hypoxia Stimulates Synthesis of Neutrophil Gelatinase-Associated Lipocalin in Aortic Valve Disease. Front Cardiovasc Med 2019; 6:156. [PMID: 31737648 PMCID: PMC6828964 DOI: 10.3389/fcvm.2019.00156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Aortic valve disease is commonly found in the elderly population. It is characterized by dysregulated extracellular matrix remodeling followed by extensive microcalcification of the aortic valve and activation of valve interstitial cells. The mechanism behind these events are largely unknown. Studies have reported expression of hypoxia inducible factor-1 alpha (HIF1α) in calcific nodules in aortic valve disease, therefore we investigated the effect of hypoxia on extracellular matrix remodeling in aged aortic valves. Approach and Results: Western blotting revealed elevated expression of HIF1α and the complex of matrix metalloprotease 9 (MMP9) and neutrophil gelatinase-associated lipocalin (NGAL) in aged porcine aortic valves cultured under hypoxic conditions. Consistently, immunofluorescence staining showed co-expression of MMP9 and NGAL in the fibrosa layer of these porcine hypoxic aortic valves. Gelatinase zymography demonstrated that the activity of MMP9-NGAL complex was significantly increased in aortic valves in 13% O2 compared to 20% O2. Importantly, the presence of ectopic elastic fibers in the fibrosa of hypoxic aortic valves, also detected in human diseased aortic valves, suggests altered elastin homeostasis due to hypoxia. Conclusion: This study demonstrates that hypoxia stimulates pathological extracellular matrix remodeling via expression of NGAL and MMP9 by valve interstitial cells.
Collapse
|
13
|
Franco PN, Durrant LM, Carreon D, Haddad E, Vergara A, Cascavita C, Obenaus A, Pearce WJ. Prenatal metyrapone treatment modulates neonatal cerebrovascular structure, function, and vulnerability to mild hypoxic-ischemic injury. Am J Physiol Regul Integr Comp Physiol 2019; 318:R1-R16. [PMID: 31577477 DOI: 10.1152/ajpregu.00145.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study explored the hypothesis that late gestational reduction of corticosteroids transforms the cerebrovasculature and modulates postnatal vulnerability to mild hypoxic-ischemic (HI) injury. Four groups of Sprague-Dawley neonates were studied: 1) Sham-Control, 2) Sham-MET, 3) HI-Control, and 4) HI-MET. Metyrapone (MET), a corticosteroid synthesis inhibitor, was administered via drinking water from gestational day 11 to term. In Shams, MET administration 1) decreased reactivity of the hypothalamic-pituitary-adrenal (HPA) axis to surgical trauma in postnatal day 9 (P9) pups by 37%, 2) promoted cerebrovascular contractile differentiation in middle cerebral arteries (MCAs), 3) decreased compliance ≤46% and increased depolarization-induced calcium mobilization in MCAs by 28%, 4) mildly increased hemispheric cerebral edema by 5%, decreased neuronal degeneration by 66%, and increased astroglial and microglial activation by 10- and 4-fold, respectively, and 5) increased righting reflex times by 29%. Regarding HI, metyrapone-induced fetal transformation 1) diminished reactivity of the HPA axis to HI-induced stress in P9/P10 pups, 2) enhanced HI-induced contractile dedifferentiation in MCAs, 3) lessened the effects of HI on MCA compliance and calcium mobilization, 4) decreased HI-induced neuronal injury but unmasked regional HI-induced depression of microglial activation, and 5) attenuated the negative effects of HI on open-field exploration but enhanced the detrimental effects of HI on negative geotaxis responses by 79%. Overall, corticosteroids during gestation appear essential for normal cerebrovascular development and glial quiescence but induce persistent changes that in neonates manifest beneficially as preservation of postischemic contractile differentiation but detrimentally as worsened ischemic cerebrovascular compliance, increased ischemic neuronal injury, and compromised neurobehavior.
Collapse
Affiliation(s)
- P Naomi Franco
- Center for Perinatal Biology, Divisions of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Lara M Durrant
- Center for Perinatal Biology, Divisions of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Desirelys Carreon
- Center for Perinatal Biology, Divisions of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Elizabeth Haddad
- Department of Pediatrics, University of California, Irvine School of Medicine, Irvine, California
| | - Adam Vergara
- Center for Perinatal Biology, Divisions of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Catherine Cascavita
- Center for Perinatal Biology, Divisions of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine School of Medicine, Irvine, California
| | - William J Pearce
- Center for Perinatal Biology, Divisions of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
14
|
Yang M, Liu J, Wang F, Tian Z, Ma B, Li Z, Wang B, Zhao W. Lysyl oxidase assists tumor‑initiating cells to enhance angiogenesis in hepatocellular carcinoma. Int J Oncol 2019; 54:1398-1408. [PMID: 30720077 DOI: 10.3892/ijo.2019.4705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
A highly tumorigenic and malignant sub‑population of HCC containing tumor‑initiating cells (TICs) are defined by high self‑renewal and sphere formation ability. Lysyl oxidase (LOX) regulates various factors involved in extracellular matrix (ECM) maintenance, migration and angiogenesis. Certain reports have demonstrated the role of LOX in ECM crosslinking, however, the cancer‑promoting effects of LOX in HCC remain unclear, and whether LOX has a role in the regulation of angiogenesis in HCC TICs has not been elucidated. In the current study, RNA sequencing using next‑generation sequencing technology and bioinformatics analyses revealed that LOX gene expression was significantly upregulated in cell spheres. Sphere cells may form tumors with more vascular enrichment compared with tumors produced from adherent cells, as observed in a mouse xenograft model. LOX expression is correlated with increased vascular endothelial growth factor (VEGF) and platelet‑derived growth factor, as demonstrated by analyses of The Cancer Genome Atlas and Gene Expression Omnibus databases. Conditioned media obtained from LOX‑overexpressing tumor cells stimulated angiogenesis via secreted VEGF and enhanced the tube formation capacity of endothelial cells. Furthermore, these functional behaviors were blocked by the LOX inhibitor β‑aminopropionitrile. These findings provide novel mechanistic insight into the pivotal role of LOX in the regulation of TICs in HCC. Combination of LOX inhibitor with sorafenib is a potentially advantageous strategy for HCC therapy.
Collapse
Affiliation(s)
- Min Yang
- Department of Gerontology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Fei Wang
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Unit 0853, Houston, TX 77030, USA
| | - Zhihua Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Central Laboratory, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Bo Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Boqing Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
15
|
Improved Long-Term Volume Retention of Stromal Vascular Fraction Gel Grafting with Enhanced Angiogenesis and Adipogenesis. Plast Reconstr Surg 2018; 141:676e-686e. [PMID: 29334574 DOI: 10.1097/prs.0000000000004312] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The apoptosis of mature adipocytes after fat grafting can result in chronic inflammation, absorption, and fibrosis, leading to unpredictable outcomes. Selective elimination of mature adipocytes may result in better outcomes and a different underlying retention mode. The authors previously developed a mature adipocyte-free product, stromal vascular fraction gel, derived from lipoaspirate, which eliminates adipocytes and preserves the stromal vascular fraction. This study investigated the retention and regeneration mode of stromal vascular fraction gel grafting. METHODS Nude mice were grafted with human-derived stromal vascular fraction gel or Coleman fat. Detailed cellular events over 3 months were investigated histologically and immunohistochemically. RESULTS The retention rate 90 days after grafting was significantly higher for stromal vascular fraction gel grafts than for standard Coleman fat (82 ± 15 percent versus 42 ± 9 percent; p < 0.05). Histologic analysis suggested that, unlike Coleman fat grafts, stromal vascular fraction gel grafts did not include significant necrotic areas. Moreover, although adipose tissue regeneration was found in grafts of both groups, rapid angiogenesis and macrophage infiltration were observed at a very early stage after stromal vascular fraction gel grafting. The presence of small preadipocytes with multiple intracellular lipid droplets in stromal vascular fraction gel grafts on day 3 also suggested very early adipogenesis. Although some of the cells in the stromal vascular fraction survived in stromal vascular fraction gel grafts, most of the newly formed adipose tissue was host-derived. CONCLUSION Stromal vascular fraction gel has a high long-term retention rate and a unique adipose regeneration mode, involving prompt inflammation and infiltration of immune cells, stimulating rapid angiogenesis and inducing host cell-mediated adipogenesis.
Collapse
|
16
|
Wobma HM, Tamargo MA, Goeta S, Brown LM, Duran-Struuck R, Vunjak-Novakovic G. The influence of hypoxia and IFN-γ on the proteome and metabolome of therapeutic mesenchymal stem cells. Biomaterials 2018; 167:226-234. [PMID: 29574308 PMCID: PMC5894357 DOI: 10.1016/j.biomaterials.2018.03.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
Over the past 15 years, mesenchymal stem cells (MSCs) have been assessed for their capacity to suppress inflammation and promote tissue repair. Regardless of whether the cells are primed (exposed to instructive cues) before administration, their phenotype will respond to environmental signals present in the pathophysiological setting being treated. Since hypoxia and inflammation coexist in the settings of acute injury and chronic disease we sought to explore how the proteome and metabolome of MSCs changes when cells were exposed to 48 h of 1% oxygen, interferon gamma (IFN-γ), or both cues together. We specifically focused on changes in cell metabolism, immune modulation, extracellular matrix secretion and modification, and survival capacity. IFN-γ promoted expression of anti-pathogenic proteins and induced MSCs to limit inflammation and fibrosis while promoting their own survival. Hypoxia instead led to cell adaptation to low oxygen, including upregulation of proteins involved in anaerobic metabolism, autophagy, angiogenesis, and cell migration. While dual priming resulted in additive effects, we also found many instances of synergy. These data lend insight to how MSCs may behave after administration to a patient and suggest how priming cells beforehand could improve their therapeutic capacity.
Collapse
Affiliation(s)
- Holly M Wobma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY, USA
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY, USA
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Pastel E, Price E, Sjöholm K, McCulloch LJ, Rittig N, Liversedge N, Knight B, Møller N, Svensson PA, Kos K. Lysyl oxidase and adipose tissue dysfunction. Metabolism 2018; 78:118-127. [PMID: 29051043 DOI: 10.1016/j.metabol.2017.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/01/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Lysyl oxidase (LOX) is an enzyme crucial for collagen fibre crosslinking and thus for fibrosis development. Fibrosis is characterised by a surplus of collagen fibre accumulation and is amongst others also a feature of obesity-associated dysfunctional adipose tissue (AT) which has been linked with type 2 diabetes. We hypothesised that in type 2 diabetes and obesity LOX expression and activity will be increased as a consequence of worsening AT dysfunction. This study aimed to provide a comprehensive characterisation of LOX in human AT. METHODS LOX mRNA expression was analysed in omental and abdominal subcutaneous AT obtained during elective surgery from subjects with a wide range of BMI, with and without diabetes. In addition, LOX expression was studied in subcutaneous AT before and 9.5months after bariatric surgery. To study the mechanism of LOX changes, its expression and activity were assessed after either hypoxia, recombinant human leptin or glucose treatment of AT explants. In addition, LOX response to acute inflammation was tested after stimulation by a single injection of lipopolysaccharide versus saline solution (control) in healthy men, in vivo. Quantity of mRNA was measured by RT-qPCR. RESULTS LOX expression was higher in obesity and correlated with BMI whilst, in vitro, leptin at high concentrations, as a potential feedback mechanism, suppressed its expression. Neither diabetes status, nor hyperglycaemia affected LOX. Hypoxia and lipopolysaccharide-induced acute inflammation increased LOX AT expression, latter was independent of macrophage infiltration. CONCLUSIONS Whilst LOX may not be affected by obesity-associated complications such as diabetes, our results confirm that LOX is increased by hypoxia and inflammation as underlying mechanism for its upregulation in adipose tissue with obesity.
Collapse
Affiliation(s)
- Emilie Pastel
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK
| | - Emily Price
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK
| | - Kajsa Sjöholm
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Laura J McCulloch
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK
| | - Nikolaj Rittig
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bridget Knight
- RD&E NHS Foundation Trust, Exeter, UK; NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Niels Møller
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Per-Arne Svensson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Kos
- Diabetes and Obesity Research Group, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
18
|
Kayabolen A, Keskin D, Aykan A, Karslıoglu Y, Zor F, Tezcaner A. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization. ACTA ACUST UNITED AC 2017; 12:035007. [PMID: 28361795 DOI: 10.1088/1748-605x/aa6a63] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, vascularization is needed since nutrients and oxygen cannot reach cells in thick implants by diffusion. Obtaining a biocompatible scaffold with good mechanical properties is another problem. In this study, we aimed to develop thick and vascularized adipose tissue constructs supporting cell viability and adipose tissue regeneration. Hydrogels were prepared by mixing rat decellularized adipose tissue (DAT) and silk fibroin (Fib) at different v/v ratios (3:1, 1:1 and 1:3) and vortexing. Gelation times decreased with increasing fibroin ratio Among hydrogel groups 1:3-DAT:Fib ratio group showed similar mechanical properties with adipose tissue. Both pre-adipocytes and pre-endothelial cells, pre-differentiated from adipose derived stem cells (ASCs), were encapsulated in hydrogels at a 1: 3 ratio. In vitro analyses showed that hydrogels with 1:3 (v/v) DAT:Fib ratio supported better cell viability. Pre-adipocytes had lipid vesicles, and pre-endothelial cells formed tubular structures inside hydrogels only after 3 days in vitro. When endothelial and adipogenic pre-differentiated ASCs (for 7 days before encapsulation) were encapsulated together into 1:3-DAT:Fib hydrogels both cell types continued to differentiate into the committed cell lineage. Vascularization process in the hydrogels implanted with adipogenic and endothelial pre-differentiated ASCs took place between the first and second week after implantation which was faster than observed in the empty hydrogels. ASCs pre-differentiated towards adipogenic lineage inside hydrogels had begun to accumulate lipid vesicles after 1 week of subcutaneous implantation Based on these results, we suggest that 1:3-DAT:Fib hydrogels with enhanced vascularization hold promise for adipose tissue engineering.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Department of Biomedical Engineering, Middle East Technical University, Turkey
| | | | | | | | | | | |
Collapse
|