1
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Vitamin A metabolites inhibit ferroptosis. Biomed Pharmacother 2023; 164:114930. [PMID: 37236031 DOI: 10.1016/j.biopha.2023.114930] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin A (retinol) is a lipid-soluble vitamin that acts as a precursor for several bioactive compounds, such as retinaldehyde (retinal) and isomers of retinoic acid. Retinol and all-trans-retinoic acid (atRA) penetrate the blood-brain barrier and are reported to be neuroprotective in several animal models. We characterised the impact of retinol and its metabolites, all-trans-retinal (atRAL) and atRA, on ferroptosis-a programmed cell death caused by iron-dependent phospholipid peroxidation. Ferroptosis was induced by erastin, buthionine sulfoximine or RSL3 in neuronal and non-neuronal cell lines. We found that retinol, atRAL and atRA inhibited ferroptosis with a potency superior to α-tocopherol, the canonical anti-ferroptotic vitamin. In contrast, we found that antagonism of endogenous retinol with anhydroretinol sensitises ferroptosis induced in neuronal and non-neuronal cell lines. Retinol and its metabolites atRAL and atRA directly interdict lipid radicals in ferroptosis since these compounds displayed radical trapping properties in a cell-free assay. Vitamin A, therefore, complements other anti-ferroptotic vitamins, E and K; metabolites of vitamin A, or agents that alter their levels, may be potential therapeutics for diseases where ferroptosis is implicated.
Collapse
Affiliation(s)
- Md Jakaria
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel A Belaidi
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Scott Ayton
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Towards a New Biomarker for Diabetic Retinopathy: Exploring RBP3 Structure and Retinoids Binding for Functional Imaging of Eyes In Vivo. Int J Mol Sci 2023; 24:ijms24054408. [PMID: 36901838 PMCID: PMC10002987 DOI: 10.3390/ijms24054408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe disease with a growing number of afflicted patients, which places a heavy burden on society, both socially and financially. While there are treatments available, they are not always effective and are usually administered when the disease is already at a developed stage with visible clinical manifestation. However, homeostasis at a molecular level is disrupted before visible signs of the disease are evident. Thus, there has been a constant search for effective biomarkers that could signal the onset of DR. There is evidence that early detection and prompt disease control are effective in preventing or slowing DR progression. Here, we review some of the molecular changes that occur before clinical manifestations are observable. As a possible new biomarker, we focus on retinol binding protein 3 (RBP3). We argue that it displays unique features that make it a very good biomarker for non-invasive, early-stage DR detection. Linking chemistry to biological function and focusing on new developments in eye imaging and two-photon technology, we describe a new potential diagnostic tool that would allow rapid and effective quantification of RBP3 in the retina. Moreover, this tool would also be useful in the future to monitor therapeutic effectiveness if levels of RBP3 are elevated by DR treatments.
Collapse
|
3
|
Shu W, Zhu X, Wang K, Cherepanoff S, Conway RM, Madigan MC, Zhu H, Zhu L, Murray M, Zhou F. The multi-kinase inhibitor afatinib serves as a novel candidate for the treatment of human uveal melanoma. Cell Oncol (Dordr) 2022; 45:601-619. [PMID: 35781872 PMCID: PMC9424141 DOI: 10.1007/s13402-022-00686-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Uveal melanoma (UM) is the most common intraocular malignancy in adults with a poor prognosis and a high recurrence rate. Currently there is no effective treatment for UM. Multi-kinase inhibitors targeting dysregulated pro-tumorigenic signalling pathways have revolutionised anti-cancer treatment but, as yet, their efficacy in UM has not been established. Here, we identified the multi-kinase inhibitor afatinib as a highly effective agent that exerts anti-UM effects in in vitro, ex vivo and in vivo models. METHODS We assessed the anti-cancer effects of afatinib using cell viability, cell death and cell cycle assays in in vitro and ex vivo UM models. The signaling pathways involved in the anti-UM effects of afatinib were evaluated by Western blotting. The in vivo activity of afatinib was evaluated in UM xenograft models using tumour mass measurement, PET scan, immunohistochemical staining and TUNEL assays. RESULTS We found that afatinib reduced cell viability and activated apoptosis and cell cycle arrest in multiple established UM cell lines and in patient tumour-derived primary cell lines. Afatinib impaired cell migration and enhanced reproductive death in these UM cell models. Afatinib-induced cell death was accompanied by activation of STAT1 expression and downregulation of Bcl-xL and cyclin D1 expression, which control cell survival and cell cycle progression. Afatinib attenuated HER2-AKT/ERK/PI3K signalling in UM cell lines. Consistent with these observations, we found that afatinib suppressed tumour growth in UM xenografted mice. CONCLUSION Our data indicate that afatinib activates UM cell death and targets the HER2-mediated cascade, which modulates STAT1-Bcl-xL/cyclin D1 signalling. Thus, targeting HER2 with agents like afatinib may be a novel therapeutic strategy to treat UM and to prevent metastasis.
Collapse
Affiliation(s)
- Wenying Shu
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511400, Guangdong Province, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China
| | - Svetlana Cherepanoff
- SydPath, Department of Anatomical Pathology, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - R Max Conway
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW, 2006, Australia.,Save Sight Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, 2006, Australia
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
4
|
Hou Y, Li M, Jin Y, Xu F, Liang S, Xue C, Wang K, Zhao W. Protective effects of tetramethylpyrazine on dysfunction of the locus coeruleus in rats exposed to single prolonged stress by anti-ER stress mechanism. Psychopharmacology (Berl) 2021; 238:2923-2936. [PMID: 34231002 DOI: 10.1007/s00213-021-05908-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious stress-related neuropsychiatric disorder caused by major traumatic events. Abnormal activity of the locus coeruleus (LC)-noradrenergic system is related to the development of PTSD-like symptoms. Our previous studies have indicated that endoplasmic reticulum (ER) stress induced neuronal apoptosis of LC in rats with PTSD. The purpose of this study was to further investigate the role of ER stress pathways in LC neuronal dysfunction and elucidate the effect of the bioactive component tetramethylpyrazine (TMP) against ER stress response. We used an acute exposure to single prolonged stress (SPS) to model PTSD in rats. There were higher norepinephrine (NE) levels in the brain, increased tyrosine hydroxylase expression in LC, and enhanced anxiety-like behaviors in rats exposed to SPS, which were observed by enzyme-linked immunosorbent assay, western blot analysis and elevated plus maze test, respectively. In addition, the three major pathways of ER stress were activated by SPS exposure, which may be involved in the dysregulation of the LC-noradrenergic system of rats with PTSD. Furthermore, we found that TMP administration significantly suppressed the increased responsiveness of LC-noradrenergic system, effectively reduced the anxiety response of SPS rats, and selectively attenuated the activation of pro-apoptotic ER stress pathways. The results suggest that TMP was efficient in improving the LC-NE dysfunction induced by excessive ER stress. TMP exhibited a significant neuroprotective effect and potential therapeutics on PTSD-like symptoms.
Collapse
Affiliation(s)
- Yun Hou
- Department of Histology and Embryology, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Meifeng Li
- Department of Intensive Care Unit, Yantai Yuhuangding Hospital Qingdao University, Yantai, 264000, Shandong, China
| | - Yinchuan Jin
- Department of Medical Psychology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, China
| | - Feibo Xu
- Department of Histology and Embryology, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Shaohua Liang
- Department of Anatomy, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Chen Xue
- Clinical Medicine College, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Kaili Wang
- Clinical Medicine College, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China.
| |
Collapse
|
5
|
Li H, Hou YX, Yang Y, He QQ, Gao TH, Zhao XF, Huo ZB, Chen SB, Liu DX. Tetramethylpyrazine inhibits proliferation of colon cancer cells in vitro. World J Clin Cases 2021; 9:4542-4552. [PMID: 34222421 PMCID: PMC8223836 DOI: 10.12998/wjcc.v9.i18.4542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/27/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon cancer is one of the most common malignancies worldwide, and chemotherapy is a widely used strategy in colon cancer clinical therapy. However, chemotherapy resistance is a major cause of disease recurrence and progression in colon cancer, and thus novel drugs for treatment are urgently needed. Tetramethylpyrazine (TMP), a component of the traditional Chinese medicine Chuanxiong Hort, has been proven to exhibit a beneficial effect in tumors.
AIM To investigate the potential anticancer activity of TMP in colon cancer and its underlying mechanisms.
METHODS Colon cancer cells were incubated with different concentrations of TMP. Cell viability was evaluated by crystal violet staining assay and cell counting kit-8 assay, and cell apoptosis and cell cycle were assessed by flow cytometry.
RESULTS TMP significantly inhibited the proliferation of colon cancer cells in a dose- and time-dependent manner. In addition, flow cytometry revealed that TMP induced cell cycle arrest at the G0/G1 phase. TMP treatment caused early stage apoptosis in SW480 cells, whereas it caused late stage apoptosis in HCT116 cells.
CONCLUSION Our studies demonstrated that TMP inhibits the proliferation of colon cancer cells in a dose- and time-dependent manner by inducing apoptosis and arresting the cell cycle at the G0/G1 phase. Our findings suggest that TMP might serve as a potential novel therapeutic drug in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Hua Li
- Institute of Cancer Control, Xingtai People’s Hospital, Xingtai 054001, Hebei Province, China
| | - Yan-Xu Hou
- Institute of Cancer Control, Xingtai People’s Hospital, Xingtai 054001, Hebei Province, China
| | - Yu Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Qing-Qiang He
- Institute of Cancer Control, Xingtai People’s Hospital, Xingtai 054001, Hebei Province, China
| | - Tian-Hua Gao
- Institute of Cancer Control, Xingtai People’s Hospital, Xingtai 054001, Hebei Province, China
| | - Xiao-Feng Zhao
- Institute of Cancer Control, Xingtai People’s Hospital, Xingtai 054001, Hebei Province, China
| | - Zhi-Bin Huo
- Institute of Cancer Control, Xingtai People’s Hospital, Xingtai 054001, Hebei Province, China
| | - Shu-Bo Chen
- Institute of Cancer Control, Xingtai People’s Hospital, Xingtai 054001, Hebei Province, China
| | - Deng-Xiang Liu
- Institute of Cancer Control, Xingtai People’s Hospital, Xingtai 054001, Hebei Province, China
| |
Collapse
|
6
|
2,3,5,6-Tetramethylpyrazine protects retinal photoreceptors against endoplasmic reticulum stress by modulating ATF4-mediated inhibition of PRP aggregation. J Mol Med (Berl) 2021; 99:383-402. [PMID: 33409554 DOI: 10.1007/s00109-020-02017-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: • Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. • New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. • Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.
Collapse
|
7
|
Zeng S, Zhang T, Madigan MC, Fernando N, Aggio-Bruce R, Zhou F, Pierce M, Chen Y, Huang L, Natoli R, Gillies MC, Zhu L. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Front Cell Neurosci 2020; 14:577935. [PMID: 33328889 PMCID: PMC7710524 DOI: 10.3389/fncel.2020.577935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE), IRBP is essential for the vision of all vertebrates as it facilitates the transfer of retinoids in the visual cycle. It also helps to transport lipids between the RPE and photoreceptors. The thiol-dependent antioxidant activity of IRBP maintains the delicate redox balance in the normal retina. Thus, its dysfunction is suspected to play a role in many retinal diseases. We have reviewed here the latest research on IRBP in both retinal health and disease, including the function and regulation of IRBP under retinal stress in both animal models and the human retina. We have also explored the therapeutic potential of targeting IRBP in retinal diseases. Although some technical barriers remain, it is possible that manipulating the expression of IRBP in the retina will rescue or prevent photoreceptor degeneration in many retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Pierce
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yingying Chen
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lianlin Huang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Cheng Z, Zhang T, Zheng J, Ding W, Wang Y, Li Y, Zhu L, Murray M, Zhou F. Betulinic acid derivatives can protect human Müller cells from glutamate-induced oxidative stress. Exp Cell Res 2019; 383:111509. [PMID: 31344390 DOI: 10.1016/j.yexcr.2019.111509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Müller cells are the predominant retinal glial cells. One of the key roles of Müller cells is in the uptake of the neurotransmitter glutamate and in its conversion to glutamine. Müller cell dysfunction due to oxidative stress elicited by high glutamate concentrations can lead to toxicity, which promote the pathogenesis of retinal diseases like diabetic retinopathy and glaucoma. This study investigated the anti-oxidant activity and mechanisms of betulinic acid (BA) and its derivatives in human Müller cells. Human MIO-M1 Müller cells were pre-treated in the presence or absence of BA, BE as well as their derivatives (named H3-H20) followed by incubation with glutamate. Cell viability was evaluated with the MTT and calcein-AM assays. Reactive oxygen species (ROS) production in MIO-M1 cells was measured using CM-H2DCFDA and flow cytometry. The activation of cellular apoptosis and necrosis was analyzed with annexin V/PI staining and flow cytometry. The modulation of signaling pathways involved in glutamate-mediated cytotoxicity and ROS production was evaluated by immunoblotting. The BA derivatives H3, H5 and H7 exhibited minimal cytotoxicity and significant anti-oxidant activity. These compounds significantly suppressed ROS production and attenuated cellular necrosis elicited by glutamate-induced oxidative stress. The protective effects of H3, H5 and H7 in MIO-M1 cells were associated with the attenuation of Akt, Erk, and JNK signaling. The BA analogues H3, H5 and H7 are protective against glutamate-induced oxidative stress in human Müller cells, and elicit their actions by modulation of the Erk, Akt and JNK signaling pathways. These agents are potential candidate molecules for the prevention or treatment of human retinal diseases.
Collapse
Affiliation(s)
- Zhengqi Cheng
- The University of Sydney, School of Pharmacy, NSW, 2006, Australia
| | - Ting Zhang
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Jian Zheng
- Northeast Forestry University, Center for Bioactive Products/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Weimin Ding
- Harbin University of Science and Technology, School of Chemical and Environmental Engineering, Harbin, 150080, Heilongjiang, China
| | - Yang Wang
- Northeast Forestry University, Center for Bioactive Products/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Yue Li
- The University of Sydney, School of Pharmacy, NSW, 2006, Australia
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Michael Murray
- The University of Sydney, Discipline of Pharmacology, Faculty of Medicine and Health, NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, School of Pharmacy, NSW, 2006, Australia.
| |
Collapse
|
9
|
Zhang T, Gillies M, Wang Y, Shen W, Bahrami B, Zeng S, Zhu M, Yao W, Zhou F, Murray M, Wang K, Zhu L. Simvastatin protects photoreceptors from oxidative stress induced by all-trans-retinal, through the up-regulation of interphotoreceptor retinoid binding protein. Br J Pharmacol 2019; 176:2063-2078. [PMID: 30825184 PMCID: PMC6534793 DOI: 10.1111/bph.14650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Simvastatin is a 3-hydroxy-3-methylglutaryl CoA reductase inhibitor with multiple targets and effects. It protects neurons in the brain, but its protective effects on photoreceptors are unclear. In this study, we evaluated the neuroprotective effect of simvastatin on photoreceptors exposed to stress induced by all-trans-retinal (atRAL). EXPERIMENTAL APPROACH AlamarBlue and LDH assays were used to evaluate the viability and metabolic activity of Y79 cells (a retinoblastoma cell line) exposed to atRAL-induced stress with or without simvastatin pretreatment. Changes in cellular ROS were evaluated using flow cytometry and mitochondrial stress markers JC-1 and HSP60. Changes in levels of two photoreceptor-specific markers, cone-rod homeobox protein (CRX) and interphotoreceptor retinoid binding protein (IRBP), were evaluated with western blot. The results were validated in ex vivo human retinal explants and a mouse model of photoreceptor degeneration. KEY RESULTS Simvastatin improved mitochondrial function, alleviated oxidative stress and up-regulated the photoreceptor-specific markers IRBP and its upstream regulator CRX in Y79 cells and ex vivo human retinal explants under atRAL-induced stress. Simvastatin attenuated photoreceptor degeneration in association with up-regulation of IRBP and CRX expression after knockdown of IRBP in a murine model. CONCLUSION AND IMPLICATIONS Our findings suggest that simvastatin has a novel role in protecting photoreceptors from atRAL-induced stress. Simvastatin treatment resulted in up-regulation of IRBP and its upstream transcription factor CRX in Y79 cells, ex vivo human retinal explants, and murine retinas in vivo. Further studies of simvastatin to treat photoreceptor degeneration are warranted.
Collapse
Affiliation(s)
- Ting Zhang
- Save Sight InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Mark Gillies
- Save Sight InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Ying Wang
- Save Sight InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Weiyong Shen
- Save Sight InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Bobak Bahrami
- Save Sight InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Shaoxue Zeng
- Save Sight InstituteThe University of SydneySydneyNew South WalesAustralia
- Department of Ophthalmology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Meidong Zhu
- Save Sight InstituteThe University of SydneySydneyNew South WalesAustralia
- New South Wales Organ and Tissue Donation ServiceNew South Wales Tissue Bank, Sydney Eye HospitalSydneyNew South WalesAustralia
| | - Wenjuan Yao
- School of PharmacyThe University of SydneySydneyNew South WalesAustralia
- Department of PharmacologyNantong University Medical CollegeNantongJiangsuChina
| | - Fanfan Zhou
- School of PharmacyThe University of SydneySydneyNew South WalesAustralia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiJiangsuChina
| | - Ling Zhu
- Save Sight InstituteThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
10
|
Li X, Wang Q, Ren Y, Wang X, Cheng H, Yang H, Wang B. Tetramethylpyrazine protects retinal ganglion cells against H2O2‑induced damage via the microRNA‑182/mitochondrial pathway. Int J Mol Med 2019; 44:503-512. [PMID: 31173163 PMCID: PMC6605642 DOI: 10.3892/ijmm.2019.4214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide; the apoptosis of the retinal ganglion cells (RGCs) is a hallmark of glaucoma. Tetramethylpyrazine (TMP) is the main active component of Ligusticum wallichii Franchat, and has been demonstrated to improve a variety of injuries through its antioxidative and antiapoptotic properties. However, these effects of TMP on glaucoma have not been studied. The present study aimed to investigate the potential role of TMP in glaucoma and to elucidate its possible mechanisms responsible for these effects. An in vitro model was generated, in which primary RGCs (PRGCs) were treated with H2O2. Our study revealed that TMP protected against H2O2‑induced injury to PRGCs, as evidenced by enhanced cell viability, reduced caspase 3 activity and decreased cell apoptosis. We also reported that TMP treatment inhibited reactive oxygen species (ROS) production and malondialdehyde levels, but upregulated the antioxidative enzyme superoxide dismutase. In particular, TMP significantly increased the expression of microRNA‑182‑5p (miR‑182) in H2O2‑treated PRGCs, which was selected as the target miRNA for further research. In addition, our findings suggested that the protective effects of TMP on H2O2‑induced injury were attenuated by knockdown of miR‑182. The results of a luciferase reporter assay demonstrated that Bcl‑2 interacting protein 3 (BNIP3), an effector of mitochondria‑mediated apoptosis, was a direct target of miR‑182. In addition, TMP treatment significantly decreased the expression of BNIP3, Bax, cleaved‑caspase‑3 and cleaved‑poly(ADP‑ribose)polymerase, but increased that of Bcl‑2. Also, TMP treatment decreased the release of cytochrome c from mitochondria and improved mitochondrial membrane potential in H2O2‑treated RGCs. Of note, the inhibitory effects of TMP on the mitochondrial apoptotic pathway were suggested to be reversed by knockdown of miR‑182. Collectively, our findings provide novel evidence that TMP protects PRGCs against H2O2‑induced damage through suppressing apoptosis and oxidative stress via the miR‑182/mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Xinmin Li
- Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Qiuli Wang
- Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Yanfan Ren
- Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaomin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Huaxu Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Hua Yang
- Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Baojun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
11
|
Cheng Z, Yao W, Zheng J, Ding W, Wang Y, Zhang T, Zhu L, Zhou F. A derivative of betulinic acid protects human Retinal Pigment Epithelial (RPE) cells from cobalt chloride-induced acute hypoxic stress. Exp Eye Res 2018; 180:92-101. [PMID: 30578788 DOI: 10.1016/j.exer.2018.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
The Retinal Pigment Epithelium (RPE) is a monolayer of cells located above the choroid. It mediates human visual cycle and nourishes photoreceptors. Hypoxia-induced oxidative stress to RPE is a vital cause of retinal degeneration such as the Age-related Macular Degeneration. Most of these retinal diseases are irreversible with no efficient treatment, therefore protecting RPE cells from hypoxia stress is an important way to prevent or slow down the progression of retinal degeneration. Betulinic acid (BA) and betulin (BE) are pentacyclic triterpenoids with anti-oxidative property, but little is known about their effect on RPE cells. We investigated the protective effect of BA, BE and their derivatives against cobalt chloride-induced hypoxia stress in RPE cells. Human ARPE-19 cells were exposed to BA, BE and their eighteen derivatives (named as H3H20) that we customized through replacing moieties at C3 and C28 positions. We found that cobalt chloride reduced cell viability, increased Reactive Oxygen Species (ROS) production as well as induced apoptosis and necrosis in ARPE-19 cells. Interestingly, the pretreatment of 3-O-acetyl-glycyl- 28-O-glycyl-betulinic acid effectively protected cells from acute hypoxia stress induced by cobalt chloride. Our immunoblotting results suggested that this derivative attenuated the cobalt chloride-induced activation of Akt, Erk and JNK pathways. All findings were further validated in human primary RPE cells. In summary, this BA derivate has protective effect against the acute hypoxic stress in human RPE cells and may be developed into a candidate agent effective in the prevention of prevalent retinal diseases.
Collapse
Affiliation(s)
- Zhengqi Cheng
- School of Pharmacy, The University of Sydney, NSW, 2006, Australia
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zheng
- Center for Bioactive Products, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Weimin Ding
- School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, China
| | - Yang Wang
- Center for Bioactive Products, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|