1
|
Targeting Tumor Microenvironment Akt Signaling Represents a Potential Therapeutic Strategy for Aggressive Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065471. [PMID: 36982542 PMCID: PMC10049397 DOI: 10.3390/ijms24065471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.
Collapse
|
2
|
Influence of Dehydroxymethylepoxyquinomicin on Radiosensitivity of Thyroid Carcinoma TPC-1 Cells. JOURNAL OF ONCOLOGY 2022; 2022:5026308. [PMID: 36213820 PMCID: PMC9546666 DOI: 10.1155/2022/5026308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the influence of dehydroxymethylepoxyquinomicin (DHMEQ), an NF-κB inhibitor, on radiosensitivity of thyroid carcinoma (TC) TPC-1 cells. Methods. The isolation of CDl33 positive cells (CD133+ TPC-1) and negative cells (CD133- TPC-1) from TPC-1 cells used immunomagnetic bead sorting. After verification of the toxicity of DHMEQ to cells by MTT and cell cloning assays, the cells were divided into four groups, of which three groups were intervened by DHMEQ, 131I radiation, and DHMEQ +131I radiation, respectively, while the fourth group was used as a control without treatment. Alterations in cell growth, apoptosis, and cell cycle were observed. Results. DHMEQ had certain toxic effects on TPC-1 cells, with an IC50 of 38.57 μg/mL (
). DHMEQ inhibited CD133+ and CD133- TPC-1 proliferation and their clonogenesis after irradiation. DHMEQ + radiation contributed to a growth inhibition rate and an apoptosis rate higher than either or them alone (
), with a more significant effect on CD133- TPC-1 than CD133+ TPC-1 under the same treatment conditions (
). Conclusion. DHEMQ can increase the radiosensitivity of TC cells to 131I, inhibit tumor cell growth, and promote apoptosis. However, its effect is less significant on CD133+ TPC-1 compared with CD133- TPC-1, which may be related to the stem cell-like properties of CD133+ cells. In the future, the application of DHMEQ in TC 131I radiotherapy will effectively improve the clinical effect of patients.
Collapse
|
3
|
Stem cells therapy for thyroid diseases: progress and challenges. Curr Ther Res Clin Exp 2022; 96:100665. [PMID: 35371349 PMCID: PMC8968462 DOI: 10.1016/j.curtheres.2022.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background Thyroid hormones are indispensable for organ development and maintaining homeostasis. Thyroid diseases, including thyroiditis and thyroid cancer, affect the normal secretion of hormones and result in thyroid dysfunction. Objective This review focuses on therapeutic applications of stem cells for thyroid diseases. Methods A literature search of Medline and PubMed was conducted (January 2000–July 2021) to identify recent reports on stem cell therapy for thyroid diseases. Results Stem cells are partially developed cell types. They have the capacity to form specialized cells. Besides embryonic stem cells and mesenchymal stem cells, organ resident stem cells and cancer stem cells are recently reported to have important roles in forming organ specific cells and cancers. Stem cells, especially mesenchymal stem cells, have anti-inflammatory and anticancer functions as well. Conclusions This review outlines the therapeutic potency of embryonic stem cells, mesenchymal stem cells, thyroid resident stem cells, and thyroid cancer stem cells in thyroid cells’ regeneration, thyroid function modulation, thyroiditis suppression, and antithyroid cancers. Stem cells represent a promising form of treatment for thyroid disorders.
Collapse
|
4
|
Thyroid Carcinoma: Phenotypic Features, Underlying Biology and Potential Relevance for Targeting Therapy. Int J Mol Sci 2021; 22:ijms22041950. [PMID: 33669363 PMCID: PMC7920269 DOI: 10.3390/ijms22041950] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma consists a group of phenotypically heterogeneous cancers. Recent advances in biological technologies have been advancing the delineation of genetic, epigenetic, and non-genetic factors that contribute to the heterogeneities of these cancers. In this review article, we discuss new findings that are greatly improving the understanding of thyroid cancer biology and facilitating the identification of novel targets for therapeutic intervention. We review the phenotypic features of different subtypes of thyroid cancers and their underlying biology. We discuss recent discoveries in thyroid cancer heterogeneities and the critical mechanisms contributing to the heterogeneity with emphases on genetic and epigenetic factors, cancer stemness traits, and tumor microenvironments. We also discuss the potential relevance of the intratumor heterogeneity in understanding therapeutic resistance and how new findings in tumor biology can facilitate designing novel targeting therapies for thyroid cancer.
Collapse
|
5
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
6
|
Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance. Cancers (Basel) 2020; 12:cancers12020383. [PMID: 32046148 PMCID: PMC7072350 DOI: 10.3390/cancers12020383] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Intratumoral heterogeneity (ITH) refers to a subclonal genetic diversity observed within a tumor. ITH is the consequence of genetic instability and accumulation of genetic alterations, two mechanisms involved in the progression from an early tumor stage to a more aggressive cancer. While this process is widely accepted, the ITH of early stage papillary thyroid carcinoma (PTC) is debated. By different genetic analysis, several authors reported the frequent occurrence of PTCs composed of both tumor cells with and without RET/PTC or BRAFV600E genetic alterations. While these data, and the report of discrepancies in the genetic pattern between metastases and the primary tumor, demonstrate the existence of ITH in PTC, its extension and biological significance is debated. The ITH takes on a great significance when involves oncogenes, such as RET rearrangements and BRAFV600E as it calls into question their role of driver genes. ITH is also predicted to play a major clinical role as it could have a significant impact on prognosis and on the response to targeted therapy. In this review, we analyzed several data indicating that ITH is not a marginal event, occurring in PTC at any step of development, and suggesting the existence of unknown genetic or epigenetic alterations that still need to be identified.
Collapse
|
7
|
Rationales for the Use of Cancer Stem Cells Markers in the Staging of Papillary Thyroid Carcinoma. JOURNAL OF ONCOLOGY 2019; 2019:1659654. [PMID: 31341476 PMCID: PMC6613036 DOI: 10.1155/2019/1659654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/23/2019] [Indexed: 01/04/2023]
Abstract
Fine needle aspiration biopsy (FNAB) is a standard procedure for the detection of thyroid nodules malignancy, yet 10-25% of the sample diagnosed may go undetermined or suspicious. The utility of cancer stem cell markers (CSCM) as a differential diagnosis molecular marker in nodules of suspicious decision in FNAB was hypothesized. Papillary thyroid carcinoma (PTC) and thyroid fibroadenoma (TFA) samples were selected to test the hypothesis. The samples employed in this study were from patients who had thyroid hyperplasia and a suspicious or undetermined diagnosis by FNAB. The patient underwent a successful thyroidectomy at Al-Yarmouk Teaching Hospital in Baghdad between January 2015 and December 2017. All nodule samples underwent a systematic histopathological examination after resection. Tumors diagnosed as PTC and those diagnosed as fibroadenoma (TFA) were selected for this study. Collectively 39 PTC and 11 TFA nodules were included. Quantitative reverse transcriptase real-time PCR (qRT-PCR) and immunohistochemistry (IHC) were used to determine levels of mRNA and proteins of CSCM ALDH1A1, CD44, ABCG2, and Oct3/4 in both types of tumors were used. This study revealed that the expression levels of CSCM were significantly increased in PTC tissues when compared to benign tissues and the positive correlation was found between the CSCM expression levels and tumor stage, size, and gender. In conclusion, for a more precise diagnosis, we suggest these markers be included in what is currently available to characterize malignancy from what is not in thyroid cancer, as well as for the staging process of PTC.
Collapse
|
8
|
Abstract
Thyroid gland has been implicated in the regulation of many functions using endocrine, paracrine and autocrine signals. Functional thyroid follicular cells derived from stem cells attracted a great interest from researchers as a strategy for thyroid's regenerative therapy. Thyroid has a very low rate of turnover; however, studies showed that the regenerative ability is enhanced following diseases or thyroidectomy, which promotes the role of stem cell. The objective of this review is to summarize the morphological characterization and the expression of stem cell genes/markers in the thyroid. Also, to highlight the mechanisms of tumor formation in thyroid via its stem cells. The most important thyroid stem cell's markers are: stem cell antigen 1 (SCA-1), octamer-binding transcription 4 (OCT-4), p63, CD34+ CD45-, paired box gene 8 (PAX-8), thyroid transcription factor 1 (TTF-1), thyroid transcription factor 2 (TTF-2), hematopoietically expressed homeobox protein HHEX, the transcription factor GATA-4, hepatocyte nuclear factor 4-α (HNF-4-α) and homeobox transcription factor Nanog (hNanog). This review highlights the functional characterization describing the mechanisms of stem cell's differentiation into functional thyroid follicle and proposing mechanisms involving in cancer formation through one of these cell types: fetal cell, thyroblasts, prothyrocytes, certain genetic mutation in the mature thyroid cells or presence of a special type of cells (cancer stem cell) which are responsible for different types of cancer formation. Understanding the mechanisms of thyroid's stem cell in cancer formation and the expression of the biomarkers in normal and abnormal thyroid status are promising physiological tools in promoting thyroid regeneration and in provision management for thyroid cancer.
Collapse
Affiliation(s)
- Ebtesam A Al-Suhaimi
- Department of Biology, College of Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia.
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia.
| | - Khulood Al-Khater
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Hu J, Mirshahidi S, Simental A, Lee SC, De Andrade Filho PA, Peterson NR, Duerksen-Hughes P, Yuan X. Cancer stem cell self-renewal as a therapeutic target in human oral cancer. Oncogene 2019; 38:5440-5456. [PMID: 30936460 DOI: 10.1038/s41388-019-0800-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/29/2022]
Abstract
Tumor recurrence following treatment remains a major clinical challenge in oral cavity cancer. Cancer stem cells (CSCs) have been isolated from human oral cancers and been considered as the driving force of tumor recurrence and metastasis. However, it still remains unclear whether targeting CSCs in oral cancer is a clinically relevant strategy to combat cancer recurrence and metastasis. Here, using clinical cancer specimens and patient-derived xenografts, we show that the self-renewal regulator BMI1 is highly expressed in CSCs of oral cavity squamous cell carcinoma. Inhibition of BMI1 decreases oral CSCs' self-renewal and tumor-initiating potential. Treatment of pre-established human oral cancer xenografts with a BMI1 inhibitor resulted in abrogation of tumor progression and reduced the frequency of CSCs in the xenografts. Remarkably, the BMI1 inhibitor has therapeutic effects in cisplatin-resistant tumors and can reduce metastases initiated by circulating CSCs. Mechanistically, BMI1-inhibition leads to oral CSC necroptotic cell death, which underlies the self-renewal impairment after inhibiting BMI1. Our data provide a pre-clinical proof-of-concept that targeting BMI1-related CSC self-renewal is a clinically relevant anti-cancer therapy in human oral cavity squamous cell carcinoma.
Collapse
Affiliation(s)
- Jinwei Hu
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.,Department of Head and Neck Surgery, Fontana Medical Center, Kaiser Permanente, Fontana, CA, 92335, USA
| | - Saied Mirshahidi
- Cancer Center Biospecimen Laboratory, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.,Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Steve C Lee
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Pedro A De Andrade Filho
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Nathaniel R Peterson
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Xiangpeng Yuan
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA. .,Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
| |
Collapse
|
10
|
Yang M, Liu J, Wang F, Tian Z, Ma B, Li Z, Wang B, Zhao W. Lysyl oxidase assists tumor‑initiating cells to enhance angiogenesis in hepatocellular carcinoma. Int J Oncol 2019; 54:1398-1408. [PMID: 30720077 DOI: 10.3892/ijo.2019.4705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
A highly tumorigenic and malignant sub‑population of HCC containing tumor‑initiating cells (TICs) are defined by high self‑renewal and sphere formation ability. Lysyl oxidase (LOX) regulates various factors involved in extracellular matrix (ECM) maintenance, migration and angiogenesis. Certain reports have demonstrated the role of LOX in ECM crosslinking, however, the cancer‑promoting effects of LOX in HCC remain unclear, and whether LOX has a role in the regulation of angiogenesis in HCC TICs has not been elucidated. In the current study, RNA sequencing using next‑generation sequencing technology and bioinformatics analyses revealed that LOX gene expression was significantly upregulated in cell spheres. Sphere cells may form tumors with more vascular enrichment compared with tumors produced from adherent cells, as observed in a mouse xenograft model. LOX expression is correlated with increased vascular endothelial growth factor (VEGF) and platelet‑derived growth factor, as demonstrated by analyses of The Cancer Genome Atlas and Gene Expression Omnibus databases. Conditioned media obtained from LOX‑overexpressing tumor cells stimulated angiogenesis via secreted VEGF and enhanced the tube formation capacity of endothelial cells. Furthermore, these functional behaviors were blocked by the LOX inhibitor β‑aminopropionitrile. These findings provide novel mechanistic insight into the pivotal role of LOX in the regulation of TICs in HCC. Combination of LOX inhibitor with sorafenib is a potentially advantageous strategy for HCC therapy.
Collapse
Affiliation(s)
- Min Yang
- Department of Gerontology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Fei Wang
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Unit 0853, Houston, TX 77030, USA
| | - Zhihua Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Central Laboratory, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Bo Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Boqing Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
11
|
Shimamura M, Yamamoto K, Kurashige T, Nagayama Y. Intracellular redox status controls spherogenicity, an in vitro cancer stem cell marker, in thyroid cancer cell lines. Exp Cell Res 2018; 370:699-707. [PMID: 30053445 DOI: 10.1016/j.yexcr.2018.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/17/2023]
Abstract
Cancer stem cells (CSCs), a small fraction of a tumor mass, are proposed to be highly crucial for cancer initiation, recurrence and metastasis. We have recently found that aldehyde dehydrogenase (ALDH) 1A3 is a CSC marker in some thyroid cancer cell lines, whose functional activity is, however, not relevant for thyroid cancer stemness. Since previous studies on malignancies in other organs suggest that intracellular reactive oxygen species (ROS) might be a functional and targetable CSC marker, the present study was conducted to elucidate the significance of ROS as a functional CSC marker in thyroid cancer cell lines. We first found that ROS levels controlled spherogenicity; that is, ROSlow cells were more spherogenic than ROShigh cells. However, unlike typical CSCs in other cancers, CSC-like ROSlow cells in thyroid cancer cells were plastic and were not accompanied by de-differentiation status (i.e., expression of stemness markers/thyroid-specific transcription factors) or chemo-/radio-resistance. The lower levels of ROS were functionally critical because a forced increase in ROS levels by L-buthionine-S,R-sulfoximine, an inhibitor of glutathione (GSH) synthesis, and irradiation suppressed spherogenicity. ROS levels were also correlated with the number of double strand DNA breaks determined by 53BP1 staining. Lower ROS levels appear to be a result of decreased mitochondrial oxidative phosphorylation and elevated GSH contents. Given the importance of CSC-targeted therapy for achieving long-term disease eradication by exhausting self-renewal and growth potential of cancer tissues, ROS may be a good candidate for CSC-targeted therapy in thyroid cancer.
Collapse
Affiliation(s)
- Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|