1
|
Wang W, Jin X, Shao Q, Liu T, Liu T, Zhao X, Xu L, Gao W, Hu L, Chen Z. The Chinese herbal prescription JZ-1 promotes extracellular vesicle production and protects against herpes simplex virus type 2 infection in vitro. Heliyon 2024; 10:e27019. [PMID: 38495169 PMCID: PMC10940933 DOI: 10.1016/j.heliyon.2024.e27019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Objective Genital herpes, primarily caused by HSV-2 infection, remains a widespread sexually transmitted ailment. Extracellular vesicles play a pivotal role in host-virus confrontation. Recent research underscores the influence of Chinese herbal prescriptions on extracellular vesicle production and composition. This study aims to probe the impact of JieZe-1 (JZ-1) on extracellular vesicle components, elucidating its mechanisms against HSV-2 infection via extracellular vesicles. Methods The JZ-1's anti-HSV-2 effects were assessed using CCK-8 assay. Extracellular vesicles were precisely isolated utilizing ultracentrifugation and subsequently characterized through TEM, NTA, and Western Blot analyses. The anti-HSV-2 activity of extracellular vesicles was gauged using CCK-8, Western Blot, and immunofluorescence. Additionally, high-throughput sequencing was employed to detect miRNAs from extracellular vesicles, unraveling the potential antiviral mechanisms of JZ-1. Results Antiviral efficacy of JZ-1 was shown in VK2/E6E7, HeLa, and Vero cells. The samples extracted from cell supernatant by ultracentrifugation were identified as extracellular vesicles. In VK2/E6E7 cells, extracellular vesicles from JZ-1 group enhanced cell survival rates and diminished the expression of intracellular viral protein gD, contrasting with the inert effect of control group vesicles. Extracellular vesicles from JZ-1 treated Vero cells demonstrated a weaker yet discernible anti-HSV-2 effect. Conversely, extracellular vesicles of HeLa cells exhibited no anti-HSV-2 effect from either group. High-throughput sequencing of VK2/E6E7 cell extracellular vesicles unveiled significant upregulation of miRNA-101, miRNA-29a, miRNA-29b, miRNA-29c, and miRNA-637 in JZ-1 group vesicles. KEGG pathway analysis suggested that these miRNAs may inhibit PI3K/AKT/mTOR signaling pathway and induce autophagy of host cells to protect against HSV-2. Western blot confirmed the induction of autophagy and inhibition of AKT/mTOR in VK2/E6E7 cells with JZ-1 group extracellular vesicles treatment. Conclusion JZ-1 had an anti-HSV-2 efficacy. After JZ-1 stimulation, VK2/E6E7 cells secreted extracellular vesicles which protect host cells from HSV-2 infection. High-throughput sequencing showed that these extracellular vesicles contained a large number of miRNAs targeting PI3K/AKT/mTOR pathway. JZ-1 group extracellular vesicles could inhibit the activation of AKT/mTOR pathway and induce the host cells autophagy.
Collapse
Affiliation(s)
- Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianli Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Gao
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liu Hu
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Yuan L, Zhao J, Shen Z, Zhang Q, Geng Y, Zheng CH, Huang DS. iCircDA-NEAE: Accelerated attribute network embedding and dynamic convolutional autoencoder for circRNA-disease associations prediction. PLoS Comput Biol 2023; 19:e1011344. [PMID: 37651321 PMCID: PMC10470932 DOI: 10.1371/journal.pcbi.1011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
Accumulating evidence suggests that circRNAs play crucial roles in human diseases. CircRNA-disease association prediction is extremely helpful in understanding pathogenesis, diagnosis, and prevention, as well as identifying relevant biomarkers. During the past few years, a large number of deep learning (DL) based methods have been proposed for predicting circRNA-disease association and achieved impressive prediction performance. However, there are two main drawbacks to these methods. The first is these methods underutilize biometric information in the data. Second, the features extracted by these methods are not outstanding to represent association characteristics between circRNAs and diseases. In this study, we developed a novel deep learning model, named iCircDA-NEAE, to predict circRNA-disease associations. In particular, we use disease semantic similarity, Gaussian interaction profile kernel, circRNA expression profile similarity, and Jaccard similarity simultaneously for the first time, and extract hidden features based on accelerated attribute network embedding (AANE) and dynamic convolutional autoencoder (DCAE). Experimental results on the circR2Disease dataset show that iCircDA-NEAE outperforms other competing methods significantly. Besides, 16 of the top 20 circRNA-disease pairs with the highest prediction scores were validated by relevant literature. Furthermore, we observe that iCircDA-NEAE can effectively predict new potential circRNA-disease associations.
Collapse
Affiliation(s)
- Lin Yuan
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| | - Jiawang Zhao
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| | - Zhen Shen
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, China
| | - Qinhu Zhang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
| | - Yushui Geng
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| | - Chun-Hou Zheng
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, China
| | - De-Shuang Huang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
| |
Collapse
|
3
|
Jia T, Zhang Q, Xu H, Liu H, Gu X. The function of miR-637 in non-small cell lung cancer progression and prognosis. Pulmonology 2023; 29:111-118. [PMID: 34176781 DOI: 10.1016/j.pulmoe.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with a high mortality rate and poor prognosis. miR-637 has been reported to regulate tumor progression and act as a prognosis biomarker of various cancers. Its functional role in NSCLC was investigated in this study. METHODS The expression level of miR-637 in NSCLC tissues and adjacent normal tissues of 123 NSCLC patients was analyzed by qRT-PCR. The association between miR-637 and clinical pathological features in the prognosis of patients was analyzed. Cell transfection was performed to overexpress or knockdown miR-637 in H1299 and HCC827. The proliferation, migration, and invasion of H1299 and HCC827 were evaluated by CCK8 and Transwell assay. RESULTS miR-637 expression was significantly decreased in NSCLC tissues and cell lines relative to normal tissues and cells. The survival rate of NSCLC patients with low miR-637 expression was lower than that of patients with high miR-637 expression. Additionally, miR-637 served as a tumor suppressor that inhibited cell proliferation, migration, and invasion of NSCLC. CONCLUSION Downregulation of miR-637 in NSCLC was associated with TNM stage and poor prognosis of patients and served as a tumor suppressor in NSCLC. These results provide a potential strategy to control NSCLC.
Collapse
Affiliation(s)
- Teng Jia
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256003, China
| | - Qingguang Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256003, China
| | - Haitao Xu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256003, China
| | - Hongjian Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256003, China
| | - Xiaojie Gu
- Department of Ultrasound, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, Shandong 256003, China.
| |
Collapse
|
4
|
Investigation of miR-133a, miR-637 and miR-944 genes expression and their relationship with PI3K/AKT signaling in women with breast cancer. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04583-8. [PMID: 36656380 DOI: 10.1007/s00432-023-04583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE MicroRNAs (miRNAs) are regulatory molecules capable of positively or negatively regulating signaling pathways, and are involved in tumorigenesis as well as various aspects of cancer. The purpose of this study was to investigate the expression levels of miR-133a, miR-637, and miR-944 in serum and tumor tissues as well as their relationship with the expression level of phosphatidylinositol-3-kinase (PI3K) and protein kinase-B (AKT) genes and proteins along with their clinical significance in breast cancer. METHODS The expressions of miR-133a, miR-637, miR-944, PI3K, and AKT genes were examined in the tumor and tumor margin tissues of 40 patients with breast cancer, as well as the serum levels of miR-133a, miR-637, and miR-944 in these patients and 40 healthy groups by quantitative real-time PCR (qRT-PCR). PI3K and AKT proteins expression in tumor and tumor margin tissues were detected using immunohistochemistry (IHC). RESULTS The expression levels of miR-133a and miR-637 in the tumor tissue and serum of patients were lower than those in the tumor margin tissue and serum of the healthy group, respectively. In addition, the expression level of miR-944 in the tumor tissue was lower than that in the tumor margin tissue, but its expression increased in the serum of cancer patients compared to that in the healthy group. The expression of miR-637 was correlated with tumor location and Her2 receptors, and the expression of miR-944 was correlated with tumor location and family history. PI3K and AKT mRNA and protein levels were higher in the tumor tissues than in the tumor margin tissues (p < 0.05). CONCLUSION The results of our study revealed that miR-637 has a better diagnostic value in breast cancer than miR-133a and miR-944.
Collapse
|
5
|
Shen J, Liang C, Su X, Wang Q, Ke Y, Fang J, Zhang D, Duan S. Dysfunction and ceRNA network of the tumor suppressor miR-637 in cancer development and prognosis. Biomark Res 2022; 10:72. [PMID: 36175921 PMCID: PMC9524011 DOI: 10.1186/s40364-022-00419-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs ranging from 17 to 25 nt in length. miR-637 is down-regulated in most cancers and up-regulated only in clear cell renal cell carcinoma (ccRCC). miR-637 can target 21 protein-coding genes, which are involved in the regulation of cell growth, cell cycle, cell proliferation, epithelial-mesenchymal transition (EMT), cancer cell invasion and metastasis, etc. In glioma, the transcription factor ZEB2 can bind to the miR-637 promoter region and inhibit miR-637 expression. Besides, miR-637 could be negatively regulated by competing endogenous RNA (ceRNAs) comprising 13 circular RNA (circRNAs) and 9 long non-coding RNA (lncRNAs). miR-637 is involved in regulating five signaling pathways, including the Jak/STAT3, Wnt/β-catenin, PI3K/AKT, and ERK signaling pathways. Low miR-637 expression was significantly associated with larger tumors and later tumor node metastasis (TNM) staging in cancer patients. Low miR-637 expression was also associated with poorer overall survival (OS) in cancer patients such as glioblastoma and low-grade gliomas (GBM/LGG), non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), and ovarian cancer (OV). Low expression of miR-637 increases the resistance of colorectal cancer (CRC) and human cholangiocarcinoma (CHOL) cancer cells to three anticancer chemotherapeutics (gemcitabine (dFdC), cisplatin (DDP), and oxaliplatin (OXA)). Our work summarizes the abnormal expression of miR-637 in various cancers, expounds on the ceRNA regulatory network and signaling pathway involved in miR-637, and summarizes the effect of its abnormal expression on the biological behavior of tumor cells. At the same time, the relationship between the expression levels of miR-637 and its related molecules and the prognosis and pathological characteristics of patients was further summarized. Finally, our work points out the insufficiency of miR-637 in current studies and is expected to provide potential clues for future miR-637-related studies.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Chenhao Liang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Qurui Wang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Ke
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Fang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Dayong Zhang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Xu B, Dan W, Zhang X, Wang H, Cao L, Li S, Li J. Gene Differential Expression and Interaction Networks Illustrate the Biomarkers and Molecular Biological Mechanisms of Unsaponifiable Matter in Kanglaite Injection for Pancreatic Ductal Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6229462. [PMID: 35707377 PMCID: PMC9192213 DOI: 10.1155/2022/6229462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Background Kanglaite injection (KLTi) has shown good clinical efficacy in the treatment of pancreatic ductal adenocarcinoma (PDAC). While previous studies have demonstrated the antitumor effects of the oil compounds in KLTi, it is unclear whether the unsaponifiable matter (USM) also has antitumor effects. This study used network pharmacology, molecular docking, and database verification methods to investigate the molecular biological mechanisms of USM. Methods Compounds of USM were obtained from GC-MS, and targets from DrugBank. Next, the GEO database was searched for differentially expressed genes in cancerous tissues and healthy tissues of PDAC to identify targets. Subsequently, the protein-protein interaction of USM and PDAC targets was constructed by BisoGenet to extract candidate genes. The candidate genes were enriched using GO and KEGG by Metascape, and the gene-pathway network was constructed to screen the key genes. Molecular docking and molecular dynamic simulations of core compound targets were finally performed and to explore the diagnostic, survival, and prognosis value of targets. Results A total of 10 active compounds and 36 drug targets were screened for USM, 919 genes associated with PDAC, and 139 USM candidate genes against PDAC were excavated. The enrichment predicted USM by acting on RELA, NFKB1, IKBKG, JUN, MAPK1, TP53, and AKT1. Molecular docking and dynamic simulations confirmed the screened core targets had good affinity and stability with the corresponding compounds. In diagnostic ROC validation, the above targets have certain accuracy for diagnosing PDAC, and the combined diagnosis is more advantageous. As the most diagnostic value of RELA, it is equally significant in predicting disease-specific survival and progression-free interval. Conclusions USM in KLTi plays an anti-PDAC role by intervening in the cell cycle, inducing apoptosis, and downregulating the NF-κB, MAPK, and PI3K-Akt pathways. It might participate in the pancreatic cancer pathway, and core target groups have diagnostic, survival, and prognosis value biomarker significance.
Collapse
Affiliation(s)
- Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenchao Dan
- Department of Dermatological, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiaoxiao Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Heping Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shixin Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
7
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
8
|
Liang Y, Meng K, Qiu R. Circular RNA Circ_0013958 Functions as a Tumor Promoter in Ovarian Cancer by Regulating miR-637/PLXNB2 Axis. Front Genet 2021; 12:644451. [PMID: 34367233 PMCID: PMC8334736 DOI: 10.3389/fgene.2021.644451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Circular RNAs (circRNAs) have emerged as important regulators in diverse human malignancies, including ovarian cancer (OC). This study was performed to explore the function and regulatory mechanism underlying circ_0013958 in OC progression. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot assay was applied to examine the expression of circ_0013958, microRNA-637 (miR-637), and Plexin B2 (PLXNB2). The target relationship between miR-637 and circ_0013958 or PLXNB2 was verified by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. Cell Counting Kit-8 (CCK-8) and colony formation assays were employed to detect cell viability and clonogenicity ability, respectively. Cell migration and invasion were analyzed by Transwell assay. Cell apoptosis was monitored by flow cytometry. The role of circ_0013958 in vivo was determined by xenograft tumor assay. Results: Circ_0013958 and PLXNB2 were upregulated, while miR-637 was downregulated in OC tissues and cells. Circ_0013958 acted as a sponge for miR-637 to regulate the expression of PLXNB2 in OC cells. The repression effects of circ_0013958 knockdown on cell proliferation, migration, invasion, and apoptosis in OC cells were partly attenuated by the miR-637 inhibitor. And miR-637 targeted PLXNB2 to suppress OC cell proliferation, migration, and invasion. Moreover, circ_0013958 silencing blocked OC tumor growth in vivo. Conclusion: Circ_0013958 knockdown impeded OC development through modulating the miR-637/PLXNB2 axis, highlighting a therapeutic target for OC.
Collapse
Affiliation(s)
- Yanfei Liang
- Department of Gynecology, The Second Nanning People's Hospital, Nanning, China
| | - Kaiyi Meng
- Department of Gynecology, The Second Nanning People's Hospital, Nanning, China
| | - Rui Qiu
- Department of Gynecology, The Second Nanning People's Hospital, Nanning, China
| |
Collapse
|
9
|
Abstract
Glioma is one of the most frequent primary brain tumors. Currently, the most common therapeutic strategy for patients with glioma is surgical resection combined with radiotherapy or/and adjuvant chemotherapy. However, due to the metastatic and invasive nature of glioma cells, the recurrence rate is high, resulting in poor prognosis. In recent years, gas therapy has become an emerging treatment. Studies have shown that the proliferation, metastasis and invasiveness of glioma cells exposed to anesthetic gases are obviously inhibited. Therefore, anesthetic gas may play a special therapeutic role in gliomas. In this review, we aim to collect existing research and summarize the rules of using anesthetic gases on glioma, providing potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi-Guang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zheng-Quan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Chen X, Li A, Zhan Q, Jing Z, Chen Y, Chen J. microRNA-637 promotes apoptosis and suppresses proliferation and autophagy in multiple myeloma cell lines via NUPR1. FEBS Open Bio 2021; 11:519-528. [PMID: 33332746 PMCID: PMC7876500 DOI: 10.1002/2211-5463.13063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous disease with poor prognosis. Increasing evidence has revealed that microRNAs (miRNAs) are strongly associated with the pathogenesis and progression of MM. Here, we investigated the role of microRNA-637 (miR-637) in MM to identify potential therapeutic targets. We measured the expression of miR-637 in bone marrow samples of MM patients and MM cell lines by quantitative real-time PCR and western blot. The effect of miR-637 on proliferation and apoptosis of MM primary cells was also investigated. Analyses of four bioinformatics databases showed that miR-637 is associated with nuclear protein 1 (NUPR1) in MM cells, which was confirmed by luciferase reporter assay. We found that the overexpression of miR-637 suppressed the development of MM. miR-637 mimics increased the levels of Bax, cleaved caspase 3, and P62, and decreased the levels of Bcl2 and LC3. Additionally, luciferase reporter assays were performed to demonstrate that NUPR1 is the main target of miR-637 in MM cells. Overexpression of NUPR1 reversed the effects of miR-637 mimics in MM cells. Our results suggest that miR-637 inhibits cell proliferation and autophagy, and promotes apoptosis in MM cells by targeting NUPR1. Our findings also suggest that miR-637 may have potential as a novel molecular therapeutic target for MM treatment.
Collapse
Affiliation(s)
- Xuanxin Chen
- Department of Hematologythe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Anmao Li
- Department of Hematologythe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Qian Zhan
- The Center for Clinical Molecular Medical Detectionthe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Zizi Jing
- Department of Hematologythe First Affiliated Hospital of Chongqing Medical UniversityChina
| | - Yiyu Chen
- Institute of Life SciencesChongqing Medical UniversityChina
| | - Jianbin Chen
- Department of Hematologythe First Affiliated Hospital of Chongqing Medical UniversityChina
| |
Collapse
|
11
|
Zeng Y, Que T, Lin J, Zhan Z, Xu A, Wu Z, Xie C, Luo J, Ding S, Long H, Zhang X, Song Y. Oncogenic ZEB2/miR-637/HMGA1 signaling axis targeting vimentin promotes the malignant phenotype of glioma. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:769-782. [PMID: 33614228 PMCID: PMC7868719 DOI: 10.1016/j.omtn.2020.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
Glioma is the most common primary tumor of the central nervous system. We previously confirmed that zinc finger E-box binding homeobox (ZEB) 2 promotes the malignant progression of glioma, while microRNA-637 (miR-637) is associated with favorable prognosis in glioma. This study aimed to investigate the potential interaction between ZEB2 and miR-637 and its downstream signaling pathway in glioma. The results revealed that ZEB2 could directly bind to the E-box elements in the miR-637 promoter and promote cell proliferation, migration, and invasion via miR-637 downregulation. Subsequent screening confirmed that HMGA1 was a direct target of miR-637, while miR-637 could drive the malignant phenotype of glioma by suppressing HMGA1 both in vitro and in vivo. Furthermore, interaction between cytoplasmic HMGA1 and vimentin was observed, and vimentin inhibition could abolish increased migration and invasion induced by HMGA1 overexpression. Both HMGA1 and vimentin were associated with an unfavorable prognosis in glioma. Additionally, upregulated HMGA1 and vimentin were found in isocitrate dehydrogenase (IDH) wild-type and 1p/19q non-codeletion diffusely infiltrating glioma. In conclusion, we identified an oncogenic ZEB2/miR-637/HMGA1 signaling axis targeting vimentin that promotes both migration and invasion in glioma.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Tianshi Que
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Zhengming Zhan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Anqi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Zhiyong Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Jie Luo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510375, People's Republic of China
| |
Collapse
|
12
|
Kong Q, Zhang Z, Liang Z. Upregulating miR-637 aggravates endoplasmic reticulum stress-induced apoptosis in gastric cancer cells by suppressing Calreticulin. Anim Cells Syst (Seoul) 2020; 24:267-274. [PMID: 33209200 PMCID: PMC7646546 DOI: 10.1080/19768354.2020.1816579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Endoplasmic reticulum (ER) stress-induced apoptosis has been confirmed to be important in the treatment of gastric cancer. MiR-637 has recently been found to exert inhibitory effects on gastric cancer, and this study aimed to investigate whether miR-637 could regulate apoptosis through ER stress. The results showed that tunicamycin (TM) induced downregulation of miR-637 in gastric cancer cells (AGS) and increase of apoptosis and ER stress. Overexpression of miR-637 promoted TM-induced apoptosis and expression of ER stress associated proteins (GRP78 and CHOP), but inhibited expression of Calreticulin. MiR-637 could bind with the 3'-UTR of CALR, and negatively regulated the expression of CALR. The co-transfection of miR-637 and CALR in AGS cells show that, CALR overexpression could reverse the pro-apoptosis effects of miR-637 in TM-treated cells. In conclusion, the present study suggests that miR-637 participates in ER stress-induced apoptosis in gastric cancer cells by suppressing CALR expression. miR-637 or CALR may be a future potential target for gastric cancer treatment.
Collapse
Affiliation(s)
- Qingli Kong
- Department of Hepatobiliary Gastrointestinal Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin City, People's Republic of China
| | - Zhisheng Zhang
- Department of Hepatobiliary Gastrointestinal Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin City, People's Republic of China
| | - Zhipeng Liang
- Department of Hepatobiliary Gastrointestinal Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin City, People's Republic of China
| |
Collapse
|
13
|
Jin J, Huang Z, Lu X, Wu S, Jia M, Li X, Li Z, He X. Bioinformatics analysis of aberrantly expressed exosomal lncRNAs in oral squamous cell carcinoma (CAL-27 vs. oral epithelial) cells. Oncol Lett 2020; 20:2378-2386. [PMID: 32782555 PMCID: PMC7400702 DOI: 10.3892/ol.2020.11764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent form of malignant tumour in the oral cavity and its early detection is critical for improving the prognosis of affected patients. The present study aimed to isolate and confirm exosomes derived from the supernatant of the OSCC cell line CAL-27 and human oral epithelial cells (HOECs), analyze long non-coding RNA (lncRNA) expression profiles and determine the diagnostic value based on bioinformatics analyses. The results indicated that the particles isolated from the supernatant of CAL-27 and HOECs were either round or oval, had a size range of 30–150 nm and were enriched with ALG-2 interacting protein X (ALIX) and tumour susceptibility 101 proteins (TSG101). These characteristics confirmed that these particles were exosomes. Three lncRNAs (NR-026892.1, NR-126435.1 and NR-036586.1) were selected as potential diagnostic biomarkers for OSCC. The expression levels of the selected lncRNAs were significantly different in CAL-27-exo vs. HOEC-exo, as well as in whole cells (CAL-27 vs. HOECs) (P<0.001). The expression levels of the three lncRNAs confirmed by quantitative PCR were consistent with the sequencing data. In conclusion, various lncRNAs were aberrantly expressed between cancerous and non-cancerous exosomes, suggesting that they may serve as biomarkers for cancer.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Stomatology, Xi'an Daxing Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zixiao Huang
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoyan Lu
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shengrong Wu
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Mei'E Jia
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xin Li
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhiyong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiangyi He
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Group of Molecular Biology, Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
14
|
Guan E, Xu X, Xue F. circ-NOTCH1 acts as a sponge of miR-637 and affects the expression of its target gene Apelin to regulate gastric cancer cell growth. Biochem Cell Biol 2020; 98:164-170. [PMID: 31276627 DOI: 10.1139/bcb-2019-0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related deaths worldwide, and has a low survival rate, low cure rate, high recurrence rate, and poor prognosis. Recent studies have indicated that circular RNAs (circRNAs) have important functions in the occurrence and progression of GC. Studies on circ-NOTCH1, which was shown to be highly expressed in GC, have indicated that miR-637 binds to circ-NOTCH1 at multiple sites, and a dual-luciferase reporter gene assay further confirmed that miR-637 indeed targeted circ-NOTCH1 and Apelin. Circ-NOTCH1 and Apelin are highly expressed in GC cells and tissues, whereas the expression of miR-637 is reduced. Circ-NOTCH1 and miR-637 do not regulate each other’s expression levels, but circ-NOTCH1significantly upregulates the expression of the miR-637 target gene Apelin, whereas miR-637 inhibites the expression of Apelin. Examination of GC cells showed that circ-NOTCH1 enhances cell proliferation and invasiveness, and reduces cell apoptosis; these effects were reversed by miR-637, which could terminate the above effects of circ-NOTCH1. When co-transfected with the circ-NOTCH1 overexpression plasmid and Apelin siRNAs, there were no obvious changes to the levels of cell proliferation, apoptosis, or invasiveness. Therefore, in GC cells, circ-NOTCH1 inhibits the transcriptional activity of miR-637, thereby upregulating the expression of its target gene Apelin and regulating cell proliferation, apoptosis, and invasiveness. This finding provides more experimental evidence for the function of circRNA in GC.
Collapse
Affiliation(s)
- Encui Guan
- Department of Gastroenterology, Linyi Central Hospital, 7# Health Road, Yishui County, Linyi 276400, Shandong Province, Linyi 276400, China
- Department of Gastroenterology, Linyi Central Hospital, 7# Health Road, Yishui County, Linyi 276400, Shandong Province, Linyi 276400, China
| | - Xiaoguang Xu
- Department of Gastroenterology, Linyi Central Hospital, 7# Health Road, Yishui County, Linyi 276400, Shandong Province, Linyi 276400, China
- Department of Gastroenterology, Linyi Central Hospital, 7# Health Road, Yishui County, Linyi 276400, Shandong Province, Linyi 276400, China
| | - Fangxi Xue
- Department of Gastroenterology, Linyi Central Hospital, 7# Health Road, Yishui County, Linyi 276400, Shandong Province, Linyi 276400, China
- Department of Gastroenterology, Linyi Central Hospital, 7# Health Road, Yishui County, Linyi 276400, Shandong Province, Linyi 276400, China
| |
Collapse
|
15
|
Huang W, Cao J, Peng X. LINC01234 facilitates growth and invasiveness of oral squamous cell carcinoma through regulating the miR-637/NUPR1 axis. Biomed Pharmacother 2019; 120:109507. [DOI: 10.1016/j.biopha.2019.109507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
|
16
|
Zhang Y, Li C, Liu X, Wang Y, Zhao R, Yang Y, Zheng X, Zhang Y, Zhang X. circHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637. EBioMedicine 2019; 48:277-288. [PMID: 31631038 PMCID: PMC6838436 DOI: 10.1016/j.ebiom.2019.09.051] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Resistance to oxaliplatin-based chemotherapy is a major cause of recurrence in colorectal cancer (CRC) patients. There is increasing evidence indicating that circHIPK3 is involved in the development and progression of tumours. However, little is known about the potential role of circHIPK3 in CRC chemotherapy and its molecular mechanisms in chemoresistance also remain unclear. METHODS Quantitative real-time PCR was performed to detect circHIPK3 expression in tissues of 2 cohorts of CRC patients who received oxaliplatin-based chemotherapy. The chemoresistant effects of circHIPK3 were assessed by cell viability, apoptosis, and autophagy assays. The relationship between circHIPK3, miR-637, and STAT3 mRNA was confirmed by biotinylated RNA pull-down, luciferase reporter, and western blot assays. FINDINGS In the pilot study, increased circHIPK3 expression was observed in chemoresistant CRC patients. Functional assays showed that circHIPK3 promoted oxaliplatin resistance, which was dependent on inhibition of autophagy. Mechanistically, circHIPK3 sponged miR-637 to promote STAT3 expression, thereby activating the downstream Bcl-2/beclin1 signalling pathway. A clinical cohort study showed that circHIPK3 was upregulated in tissues from recurrent CRC patients and correlated with tumour size, regional lymph node metastasis, distant metastasis, and survival. INTERPRETATION circHIPK3 functions as a chemoresistant gene in CRC cells by targeting the miR-637/STAT3/Bcl-2/beclin1 axis and might be a prognostic predictor for CRC patients who receive oxaliplatin-based chemotherapy. FUNDING National Natural Science Foundation of China (81301506), Shandong Medical and Health Technology Development Project(2018WSB20002), Shandong Key Research and Development Program (2016GSF201122), Natural Science Foundation of Shandong Province (ZR2017MH044), and Jinan Science and Technology Development Plan(201805084, 201805003).
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, 250031, Shandong Province, PR China
| | - Chen Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xinfeng Liu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, 250031, Shandong Province, PR China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, PR China
| | - Rui Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xin Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, PR China.
| |
Collapse
|
17
|
Uhr K, Prager-van der Smissen WJC, Heine AAJ, Ozturk B, van Jaarsveld MTM, Boersma AWM, Jager A, Wiemer EAC, Smid M, Foekens JA, Martens JWM. MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PLoS One 2019; 14:e0216400. [PMID: 31063487 PMCID: PMC6504094 DOI: 10.1371/journal.pone.0216400] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/20/2019] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. In this way they might influence whether a cell is sensitive or resistant to a certain drug. So far, only a limited number of relatively small scale studies comprising few cell lines and/or drugs have been performed. To obtain a broader view on miRNAs and their association with drug response, we investigated the expression levels of 411 miRNAs in relation to drug sensitivity in 36 breast cancer cell lines. For this purpose IC50 values of a drug screen involving 34 drugs were associated with miRNA expression data of the same breast cancer cell lines. Since molecular subtype of the breast cancer cell lines is considered a confounding factor in drug association studies, multivariate analysis taking subtype into account was performed on significant miRNA-drug associations which retained 13 associations. These associations consisted of 11 different miRNAs and eight different drugs (among which Paclitaxel, Docetaxel and Veliparib). The taxanes, Paclitaxel and Docetaxel, were the only drugs having miRNAs in common: hsa-miR-187-5p and hsa-miR-106a-3p indicative of drug resistance while Paclitaxel sensitivity alone associated with hsa-miR-556-5p. Tivantinib was associated with hsa-let-7d-5p and hsa-miR-18a-5p for sensitivity and hsa-miR-637 for resistance. Drug sensitivity was associated with hsa-let-7a-5p for Bortezomib, hsa-miR-135a-3p for JNJ-707 and hsa-miR-185-3p for Panobinostat. Drug resistance was associated with hsa-miR-182-5p for Veliparib and hsa-miR-629-5p for Tipifarnib. Pathway analysis for significant miRNAs was performed to reveal biological roles, aiding to find a potential mechanistic link for the observed associations with drug response. By doing so hsa-miR-187-5p was linked to the cell cycle G2-M checkpoint in line with this checkpoint being the target of taxanes. In conclusion, our study shows that miRNAs could potentially serve as biomarkers for intrinsic drug resistance and that pathway analyses can provide additional information in this context.
Collapse
Affiliation(s)
- Katharina Uhr
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wendy J. C. Prager-van der Smissen
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anouk A. J. Heine
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bahar Ozturk
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marijn T. M. van Jaarsveld
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius W. M. Boersma
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik A. C. Wiemer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A. Foekens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Zhang M, Xia B, Xu Y, Zhang Y, Xu J, Lou G. Circular RNA (hsa_circ_0051240) promotes cell proliferation, migration and invasion in ovarian cancer through miR-637/KLK4 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1224-1233. [PMID: 30945557 DOI: 10.1080/21691401.2019.1593999] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meiyin Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Bairong Xia
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ye Xu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yongjian Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jin Xu
- Department of Cell Biology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Circular RNAs in Vascular Functions and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1087:287-297. [PMID: 30259375 DOI: 10.1007/978-981-13-1426-1_23] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular disease is one of the top five causes of death and affects a variety of other diseases, such as heart, nervous system, and metabolic disorders. Vascular dysfunction is a hallmark of ischemia, cancer, and inflammatory diseases and can accelerate the progression of diseases. Circular RNAs (circRNAs) are a new type of noncoding RNAs with covalent bond ring structure, which have been reported to be abnormally expressed in many human diseases. circRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as disease biomarkers. Here we will summarize the functions of circRNAs in vascular diseases, including vascular dysfunction, atherosclerosis, diabetes mellitus-related retinal vascular dysfunction, chronic thromboembolic pulmonary hypertension, carotid atherosclerotic disease, hepatic vascular invasion in hepatocellular carcinoma, aortic aneurysm, coronary artery disease, and type 2 diabetes mellitus.
Collapse
|
20
|
|
21
|
Wang L, Jiang F, Xia X, Zhang B. LncRNA FAL1 promotes carcinogenesis by regulation of miR-637/NUPR1 pathway in colorectal cancer. Int J Biochem Cell Biol 2019; 106:46-56. [DOI: 10.1016/j.biocel.2018.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
|
22
|
Long non-coding RNA C5orf66-AS1 promotes cell proliferation in cervical cancer by targeting miR-637/RING1 axis. Cell Death Dis 2018; 9:1175. [PMID: 30518760 PMCID: PMC6281646 DOI: 10.1038/s41419-018-1228-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
Abstract
Long non-coding RNA (lncRNA) plays an important role in the development of human malignant tumours. Recently, an increasing number of lncRNAs have been identified and investigated in a variety of tumours. However, the expression pattern and biological function of lncRNAs in cervical cancer still remain largely unexplored. Differentially expressed lncRNAs in cervical cancer and para-carcinoma tissues were identified by screening using The Cancer Genome Atlas (TCGA), and candidate lncRNAs were verified by quantitative real-time PCR. We found that lncRNAC5orf66-AS1 was significantly upregulated in cervical cancer tissues and cells. Over-expression of C5orf66-AS1 promoted the proliferation of cervical cancer cells, while downregulation of C5orf66-AS1 promoted the apoptosis of cervical cancer cells. C5orf66-AS1 was identified as the sponge of miR-637 by RNA immunoprecipitation (RIP) and luciferase reporter assays. Exogenous miR-637 and RING1 interventions could reverse the proliferation ability mediated by C5orf66-AS1 in cervical cancer cells. In vivo experiments also confirmed that downregulation of C5orf66-AS1 inhibited the tumour growth. LncRNA C5orf66-AS1, as a competitive endogenous RNA (ceRNA), regulated the effect of RING1 on the proliferation, apoptosis and cell cycle of cervical cancer cells through adsorbing miR-637. Taken together, our findings provided a new theoretical and experimental basis for investigating the pathogenesis and exploring effective therapeutic targets for cervical cancer.
Collapse
|