1
|
Yang Y, Li Q, Chu LT, Lin X, Chen H, Chen L, Tang J, Zeng T. Autophagy in cholangiocarcinoma: a comprehensive review about roles and regulatory mechanisms. Clin Transl Oncol 2025; 27:2391-2400. [PMID: 39585591 DOI: 10.1007/s12094-024-03797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
The role of autophagy in cholangiocarcinogenesis and its development is intricate. Autophagy has a dual role in cholangiocarcinoma, and understanding the function and mechanism of autophagy in cholangiocarcinoma is pivotal in guiding therapeutic approaches to its treatment in clinical settings. Recent studies have revealed that autophagy is involved in the complex biological behavior of cholangiocarcinoma. In this review, we have summarized the genes and drugs that would promote or inhibit autophagy, leading to change in cellular behaviors of cholangiocarcinoma, including apoptosis, proliferation, invasion and migration, and influence its cellular drug resistance. In addition, we concluded the signaling pathways modulating autophagy in cholangiocarcinoma cells, including PI3K/AKT/mTOR,p38MAPK,AMPK/mTOR,LKB1-AMPK, and AKT/WNK1, and ERK signaling pathways, which subsequently impacting apoptosis, death, migration, invasion, and proliferation. In conclusion, we would like that we can provide ideas for future cholangiocarcinoma treatment by comprehensively summarizing the latest studies on the relationship between autophagy and cholangiocarcinoma, including the factors affecting autophagy and related signaling pathways.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Qiuyan Li
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Lok Ting Chu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Helian Chen
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Linsong Chen
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Jinjing Tang
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China.
| |
Collapse
|
2
|
Zhou W, Huang W, You H, Zhang M, Ma Y, Liu L, Lin M, He S, Huang Y. EZH2 knockout in mice activates STAT3 signalling via STAT3 methylation and modulates ferroptosis in pulpitis-affected dental pulp vascular endothelial cells: A laboratory investigation. Int Endod J 2025. [PMID: 40164972 DOI: 10.1111/iej.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
AIM Recent findings suggest that mitigating ferroptosis could serve as an effective strategy for treating inflammation. This study aimed to investigate the role that the enhancer of zeste homologue 2 (EZH2) mediated the signal transducer and activator of transcription 3 (stat3) methylation plays in the modulation of ferroptosis in pulpitis. The study results offer potential advancements in the therapeutic approaches for pulpitis and provide new insights and strategies for managing this condition. METHODOLOGY Bioinformatics analysis combined with methylation capture sequencing of EZH2fl/flCre+/- pulp tissue was used to explore the association between pulpitis and ferroptosis. In this study, we used an EZH2 knockout model prepared through lentiviral transduction and an LPS-induced inflammatory model of endometrial mesenchymal stromal cells to confirm the role that the EZH2/STAT3 axis plays in ferroptosis. RESULTS Bioinformatics analysis identified a link between pulpitis and DNA methylation. Methylation sequencing further revealed the association of methylation with ferroptosis and the regulation of STAT3 methylation by EZH2. In vitro, lipopolysaccharide (LPS) stimulation induced ferroptosis, whereas EZH2 disruption suppressed STAT3 expression but increased Glutathione Peroxidase 4 (GPX4) expression, leading to the escalation of oxidative stress and exacerbation of ferroptosis. This illustrates the complex interactions between methylation, ferroptosis and oral inflammation, highlighting potential therapeutic targets. CONCLUSIONS Overall, pulpitis plays a crucial role in EZH2-mediated STAT3 methylation and activates ferroptosis by regulating GPX4 expression. This study provides new insights and strategies for treatment and advances our understanding of the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Weilin Zhou
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Weili Huang
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Hongjing You
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyi Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Ma
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Lingjie Liu
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Mengxuan Lin
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Shuqi He
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Yi Huang
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Xing G, Chen H, Guo Z, Cui Y, Li Y, Shen J. OTUD6B promotes cholangiocarcinoma growth by regulating STAT3 phosphorylation through deubiquitination of PTK2. Cell Biol Int 2024; 48:1766-1778. [PMID: 39192576 DOI: 10.1002/cbin.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary carcinoma with uncontrolled cell proliferation, poor prognosis, and high mortality. The ovarian tumor structural domain (OTU) containing protein 6B (OTUD6B) belongs to the OTU deubiquitin family and is vital in tumor development. However, its expression and biological function in CCA remain unknown. The expression of OTUD6B in CCA was analyzed using TIMER2.0, UALCAN, and GEO databases. MTT, clonal formation assay, immunofluorescence staining, immunohistochemistry staining, and flow cytometry examined the regulation of OTUD6B on cell proliferation, cycle, and apoptosis. The effects of OTUD6B on tumor volume and weight were assessed using the xenograft tumor model. The activities of PTK2 and STAT3 were detected by western blot and CO-IP. The biological database identified that OTUD6B was upregulated in CCA. In CCA cells, OTUD6B knockdown reduced CCA cell proliferation and promoted apoptosis. Cell cycle analysis indicated that the cycle stopped at the G0/G1 phase after OTU6B downregulation. Furthermore, OTUD6B knockdown resulted in a decrease in tumor volume and weight in xenograft tumor models. Mechanistically, OTUD6B is involved in the deubiquitination of PTK2. PTK2 further affected the phosphorylation of STAT3 thereby regulating the CCA process. Our study demonstrates that OTUD6B knockdown participates in the ubiquitination of PTK2 and phosphorylation of STAT3 to alleviate the process of CCA. These results suggest that OTUD6B may be a potential new strategy for CCA treatment.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhiyue Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Cui
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yongyuan Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jianwei Shen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Saqirile, Deng Y, Li K, Yan W, Li K, Wang C. Gene Expression Regulation and the Signal Transduction of Programmed Cell Death. Curr Issues Mol Biol 2024; 46:10264-10298. [PMID: 39329964 DOI: 10.3390/cimb46090612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Cell death is of great significance in maintaining tissue homeostasis and bodily functions. With considerable research coming to the fore, it has been found that programmed cell death presents in multiple modalities in the body, which is not only limited to apoptosis, but also can be divided into autophagy, pyroptosis, ferroptosis, mitotic catastrophe, entosis, netosis, and other ways. Different forms of programmed cell death have disparate or analogous characteristics with each other, and their occurrence is accompanied by multiple signal transduction and the role of a myriad of regulatory factors. In recent years, scholars across the world have carried out considerable in-depth research on programmed cell death, and new forms of cell death are being discovered continually. Concomitantly, the mechanisms of intricate signaling pathways and regulators have been discovered. More critically, cancer cells tend to choose distinct ways to evade cell death, and different tumors adapt to different manners of death. Therefore, targeting the cell death network has been regarded as an effective tumor treatment strategy for a long time. The objective of our paper is to review the signaling pathways and gene regulation in several typical types of programmed cell death and their correlation with cancer.
Collapse
Affiliation(s)
- Saqirile
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Yuxin Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Wenxin Yan
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Ke Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
5
|
Hashemi M, Nazdari N, Gholamiyan G, Paskeh MDA, Jafari AM, Nemati F, Khodaei E, Abyari G, Behdadfar N, Raei B, Raesi R, Nabavi N, Hu P, Rashidi M, Taheriazam A, Entezari M. EZH2 as a potential therapeutic target for gastrointestinal cancers. Pathol Res Pract 2024; 253:154988. [PMID: 38118215 DOI: 10.1016/j.prp.2023.154988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
Gastrointestinal (GI) cancers continue to be a major cause of mortality and morbidity globally. Understanding the molecular pathways associated with cancer progression and severity is essential for creating effective cancer treatments. In cancer research, there is a notable emphasis on Enhancer of zeste homolog 2 (EZH2), a key player in gene expression influenced by its irregular expression and capacity to attach to promoters and alter methylation status. This review explores the impact of EZH2 signaling on various GI cancers, such as colorectal, gastric, pancreatic, hepatocellular, esophageal, and cholangiocarcinoma. The primary function of EZH2 signaling is to facilitate the accelerated progression of cancer cells. Additionally, EZH2 has the capacity to modulate the reaction of GI cancers to chemotherapy and radiotherapy. Numerous pathways, including long non-coding RNAs and microRNAs, serve as upstream regulators of EZH2 in these types of cancer. EZH2's enzymatic activity enables it to attach to target gene promoters, resulting in methylation that modifies their expression. EZH2 could be considered as an independent prognostic factor, with increased expression correlating with a worse disease prognosis. Additionally, a range of gene therapies including small interfering RNA, and anti-tumor agents are being explored to target EZH2 for cancer treatment. This comprehensive review underscores the current insights into EZH2 signaling in gastrointestinal cancers and examines the prospect of therapies targeting EZH2 to enhance patient outcomes.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naghmeh Nazdari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fateme Nemati
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Khodaei
- Department of Dermatology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Abyari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Behdadfar
- Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Zeng D, Shi Y, Li S, Xu F, Zhu W, Li H, He S, Yuan Q. miR-124 Exacerbates depressive-like behavior by targeting Ezh2 to induce autophagy. Behav Pharmacol 2023; 34:131-140. [PMID: 36752339 DOI: 10.1097/fbp.0000000000000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
On the basis of our previous research, miR-124 and autophagy have been shown to be associated with depression and antidepressant treatment, respectively. However, whether miR-124 is involved in depressive-like behavior and antidepressant efficacy through regulating autophagy remains poorly understood. The chronic unpredictable mild stress (CUMS) depression model in mice was established, and then intraperitoneal fluoxetine injections (10 mg/kg) were administered for a duration of 4 weeks. The behavioral changes induced by CUMS were evaluated by the tail suspension test, open field test, sucrose preference test, and elevated plus maze test. Quantitative real-time PCR was used to detect expression levels of miR-124 and its three precursor genes in hippocampus of mice. Western blotting was used to detect the expressions of Ezh2 and autophagy proteins (P62, Atg3, Atg7, LC3-I, and LC3- II) in hippocampus of mice. Depression-like behaviors were successfully induced in CUMS models and reversed by SSRI treatments. The expression levels of miR-124 and its precursor gene ( miR-124-3 ) were significantly increased in the hippocampus of CUMS mice, while the expression levels were significantly decreased after 4 weeks of fluoxetine treatment. The mRNA and protein expressions of Ezh2, a validated target of miR-124, were decreased in the hippocampus of CUMS mice, and the fluoxetine treatment could reverse the expressions. A correlation analysis suggested that miR-124 had a significant negative correlation with Ezh2 mRNA expression. The protein levels of LC3-II/I, P62, and Atg7, which were found to be regulated by Ezh2, were increased in the hippocampus of CUMS mice and decreased after fluoxetine treatment. We speculated that autophagy was enhanced in the CUMS model of depression and might be mediated by miR-124 targeting Ezh2.
Collapse
Affiliation(s)
- Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Yue Shi
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Siyuan Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Feikang Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Weimin Zhu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Qianfa Yuan
- Mental Health Research Office, Xiamen Xianyue Hospital, Xiamen, Fujian, China
| |
Collapse
|
7
|
Duan XK, Sun YX, Wang HY, Xu YY, Fan SZ, Tian JY, Yu Y, Zhao YY, Jiang YL. miR-124 is upregulated in diabetic mice and inhibits proliferation and promotes apoptosis of high-glucose-induced β-cells by targeting EZH2. World J Diabetes 2023; 14:209-221. [PMID: 37035229 PMCID: PMC10075033 DOI: 10.4239/wjd.v14.i3.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Diabetes is a chronic metabolic disease, and a variety of miRNA are involved in the occurrence and development of diabetes. In clinical studies, miR-124 is highly expressed in the serum of patients with diabetes and in pancreatic islet β-cells. However, few reports exist concerning the role and mechanism of action of miR-124 in diabetes.
AIM To investigate the expression of miR-124 in diabetic mice and the potential mechanism of action in islet β-cells.
METHODS The expression levels of miR-124 and enhancer of zeste homolog 2 (EZH2) in pancreatic tissues of diabetic mice were detected. The targeted relationship between miR-124 and EZH2 was predicted by Targetscan software and verified by a double luciferase reporter assay. Mouse islet β-cells Min6 were grown in a high glucose (HG) medium to mimic a diabetes model. The insulin secretion, proliferation, cell cycle and apoptosis of HG-induced Min6 cells were detected after interference of miR-124a and/or EZH2.
RESULTS The expression of miR-124 was upregulated and EZH2 was downregulated in the pancreatic tissue of diabetic mice compared with control mice, and the expression of miR-124 was negatively correlated with that of EZH2. miR-124 was highly expressed in HG-induced Min6 cells. Inhibition of miR-124 promoted insulin secretion and cell proliferation, induced the transition from the G0/G1 phase to the S phase of the cell cycle, and inhibited cell apoptosis in HG-induced Min6 cells. EZH2 was one of the targets of miR-124. Co-transfection of miR-124 inhibitor and siRNA-EZH2 could reverse the effects of the miR-124 inhibitor in HG-induced Min6 cells.
CONCLUSION miR-124 is highly expressed in diabetic mice and HG-induced Min6 cells and regulates insulin secretion, proliferation and apoptosis of islet β-cells by targeting EZH2.
Collapse
Affiliation(s)
- Xiao-Kai Duan
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yong-Xiang Sun
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Hong-Yun Wang
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yan-Yan Xu
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Shi-Zhen Fan
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Jin-Ya Tian
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yong Yu
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yan-Yun Zhao
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| | - Yan-Li Jiang
- Department of General Practice, Zhengzhou First People’s Hospital, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
8
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H, Jiang GM. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther 2023; 8:32. [PMID: 36646695 PMCID: PMC9842768 DOI: 10.1038/s41392-022-01300-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/19/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a conserved lysosomal degradation pathway where cellular components are dynamically degraded and re-processed to maintain physical homeostasis. However, the physiological effect of autophagy appears to be multifaced. On the one hand, autophagy functions as a cytoprotective mechanism, protecting against multiple diseases, especially tumor, cardiovascular disorders, and neurodegenerative and infectious disease. Conversely, autophagy may also play a detrimental role via pro-survival effects on cancer cells or cell-killing effects on normal body cells. During disorder onset and progression, the expression levels of autophagy-related regulators and proteins encoded by autophagy-related genes (ATGs) are abnormally regulated, giving rise to imbalanced autophagy flux. However, the detailed mechanisms and molecular events of this process are quite complex. Epigenetic, including DNA methylation, histone modifications and miRNAs, and post-translational modifications, including ubiquitination, phosphorylation and acetylation, precisely manipulate gene expression and protein function, and are strongly correlated with the occurrence and development of multiple diseases. There is substantial evidence that autophagy-relevant regulators and machineries are subjected to epigenetic and post-translational modulation, resulting in alterations in autophagy levels, which subsequently induces disease or affects the therapeutic effectiveness to agents. In this review, we focus on the regulatory mechanisms mediated by epigenetic and post-translational modifications in disease-related autophagy to unveil potential therapeutic targets. In addition, the effect of autophagy on the therapeutic effectiveness of epigenetic drugs or drugs targeting post-translational modification have also been discussed, providing insights into the combination with autophagy activators or inhibitors in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Feng Shu
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Han Xiao
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Qiu-Nuo Li
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Xiao-Shuai Ren
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Zhi-Gang Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong China
| | - Bo-Wen Hu
- grid.452859.70000 0004 6006 3273Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Hong-Sheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
9
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Albendazole-induced autophagy blockade contributes to elevated apoptosis in cholangiocarcinoma cells through AMPK/mTOR activation. Toxicol Appl Pharmacol 2022; 454:116214. [PMID: 36055539 DOI: 10.1016/j.taap.2022.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/09/2022]
Abstract
Albendazole (ABZ) is a broad-spectrum anti-parasitic drug that exhibits antitumor effects against several carcinomas. The effects of ABZ on cholangiocarcinoma (CCA) and its underlying mechanisms are still unclear. Our study aims to investigate the role of ABZ in inducing autophagy-mediated apoptosis of cholangiocarcinoma cells. The antitumor effects of ABZ were evaluated against CCA cells and HIBEC intrahepatic biliary epithelial cells. Furthermore, the apoptosis rates, and autophagy flux in RBE and FRH-0201 cells treated with ABZ were investigated. ABZ inhibited proliferation, induced cell death and apoptosis in CCA cells in vitro. In vivo, tumors from ABZ- treated BALB/c nude mice were significantly smaller than untreated mice. ABZ also induced the initiation of autophagy via AMPK/mTOR pathways, resulting in the formation of autophagosome. In addition, ABZ blocked autophagic flux by inhibiting the fusion of autophagosome-lysosome, which increased the apoptotic death of CCA cells. However, the apoptotic death of CCA cells induced by ABZ was reversed by 3-methyladenine (3-MA), an autophagosome formation inhibitor, but increased by chloroquine (CQ), an autophagosome-lysosome fusion inhibitor.Our work provides novel mechanisms for anti-tumor effects of ABZ on CCA, suggesting that ABZ may be used as a potent autophagy inhibitor in the treatment of CCA.
Collapse
|
11
|
Sanchez-Mirasierra I, Ghimire S, Hernandez-Diaz S, Soukup SF. Targeting Macroautophagy as a Therapeutic Opportunity to Treat Parkinson's Disease. Front Cell Dev Biol 2022; 10:921314. [PMID: 35874822 PMCID: PMC9298504 DOI: 10.3389/fcell.2022.921314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy, an evolutionary conserved catabolic process in the eukaryotic cell, regulates cellular homeostasis and plays a decisive role in self-engulfing proteins, protein aggregates, dysfunctional or damaged organelles, and invading pathogens. Growing evidence from in vivo and in vitro models shows that autophagy dysfunction plays decisive role in the pathogenesis of various neurodegenerative diseases, including Parkinson's disease (PD). PD is an incurable and second most common neurodegenerative disease characterised by neurological and motor dysfunction accompanied of non-motor symptoms that can also reduce the life quality of patients. Despite the investment in research, the aetiology of the disease is still unknown and the therapies available are aimed mostly at ameliorating motor symptoms. Hence, therapeutics regulating the autophagy pathway might play an important role controlling the disease progression, reducing neuronal loss and even ameliorating non-motor symptoms. In this review, we highlight potential therapeutic opportunities involved in different targeting options like an initiation of autophagy, Leucine-rich repeat kinase 2 (LRRK2) inhibition, mitophagy, lysosomes, lipid metabolism, immune system, gene expression, biomarkers, and also non-pharmacological interventions. Thus, strategies to identify therapeutics targeting the pathways modulating autophagy might hold a future for therapy development against PD.
Collapse
Affiliation(s)
| | - Saurav Ghimire
- Universite Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | |
Collapse
|
12
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Hou Z, Chen J, Yang H, Hu X, Yang F. PIAS1 alleviates diabetic peripheral neuropathy through SUMOlation of PPAR-γ and miR-124-induced downregulation of EZH2/STAT3. Cell Death Discov 2021; 7:372. [PMID: 34857740 PMCID: PMC8639830 DOI: 10.1038/s41420-021-00765-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a frequently occurring chronic complication of diabetes. In this study, we aim to explore the regulatory mechanism of protein inhibitor of activated STAT1 (PIAS1) in DPN in terms of autophagy and apoptosis of Schwann cells. The SUMOlation of PPAR-γ by PIAS1 was examined, and ChIP was performed to verify the binding of PPAR-γ to miR-124 promoter region. Dual-luciferase gene reporter assay was used to validate the binding affinity between miR-124 and EZH2/STAT3. Following loss‐ and gain‐of-function experiments, in vitro assays in high glucose-treated Schwann cells (SC4) and in vivo assays in db/db and ob/ob mice were performed to detect the effects of PIAS1 on autophagy and apoptosis of Schwann cells as well as symptoms of DPN by regulating the PPAR-γ-miR-124-EZH2/STAT3. The expression of PIAS1, PPAR-γ, and miR-124 was downregulated in the sciatic nerve tissue of diabetic mice. PIAS1 enhanced the expression of PPAR-γ through direct binding and SUMOlation of PPAR-γ. PPAR-γ enhanced the expression of miR-124 by enhancing the promoter activity of miR-124. Furthermore, miR-124 targeted and inversely modulated EZH2 and STAT3, promoting the autophagy of Schwann cells and inhibiting their apoptosis. In vivo experiments further substantiated that PIAS1 could promote the autophagy and inhibit the apoptosis of Schwann cells through the PPAR-γ-miR-124-EZH2/STAT3 axis. In conclusion, PIAS1 promoted SUMOlation of PPAR-γ to stabilize PPAR-γ expression, which upregulated miR-124 to inactivate EZH2/STAT3, thereby inhibiting apoptosis and promoting autophagy of Schwann cells to suppress the development of DPN.
Collapse
Affiliation(s)
- Zixin Hou
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Ji Chen
- Department of Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Huan Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Xiaoling Hu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Fengrui Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China. .,Department of Anesthesiology, Affiliated Huaihua Hospital, University of South China, Huaihua, 418000, P.R. China.
| |
Collapse
|
14
|
Koustas E, Trifylli EM, Sarantis P, Papavassiliou AG, Karamouzis MV. Role of autophagy in cholangiocarcinoma: An autophagy-based treatment strategy. World J Gastrointest Oncol 2021; 13:1229-1243. [PMID: 34721764 PMCID: PMC8529918 DOI: 10.4251/wjgo.v13.i10.1229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are diverse biliary epithelial tumours involving the intrahepatic, perihilar and distal parts of the biliary tree. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis and strategy for clinical management. However, many cholangiocarcinoma tumor-cells appear to be resistant to current chemotherapeutic agents. The role of autophagy and the therapeutic value of autophagy-based therapy are largely unknown in CCA. The multistep nature of autophagy offers a plethora of regulation points, which are prone to be deregulated and cause different human diseases, including cancer. However, it offers multiple targetable points for designing novel therapeutic strategies. Tumor cells have evolved to use autophagy as an adaptive mechanism for survival under stressful conditions such as energy imbalance and hypoxic region of tumors within the tumor microenvironment, but also to increase invasiveness and resistance to chemotherapy. The purpose of this review is to summarize the current knowledge regarding the interplay between autophagy and cholangiocarcinogenesis, together with some preclinical studies with agents that modulate autophagy in order to induce tumor cell death. Altogether, a combinatorial strategy, which comprises the current anti-cancer agents and autophagy modulators, would represent a positive CCA patient approach.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
15
|
Ninfole E, Pinto C, Benedetti A, Marzioni M, Maroni L. Role of autophagy in cholangiocarcinoma: Pathophysiology and implications for therapy. World J Clin Cases 2021; 9:6234-6243. [PMID: 34434990 PMCID: PMC8362566 DOI: 10.12998/wjcc.v9.i22.6234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour of the biliary system that originates from the neoplastic transformation of cholangiocytes. CCA is characterized by late diagnosis and poor outcome, with surgery considered as the last option for management. Autophagy is a physiological lysosomal degradation process, essential for cellular homeostasis and ubiquitous in all eukaryotic cells. Several studies have reported a potential involvement of autophagy in cancer, but it remains unclear whether activation of this process represents a survival mechanism of cancer cells. In the present review, we examine the autophagic process and summarize the current knowledge about the involvement of autophagy in the progression of cancer. The link between autophagy and chemoresistance and the use of autophagic markers in diagnosis are also considered in detail. Preliminary evidence shows that the combination of autophagy modulators (activators or inhibitors) with conventional chemotherapeutic agents offers a possible treatment option against signalling pathways that are hyperactivated or altered in CCA. In vitro evidence suggests that combination of chemotherapy agents, such as cisplatin, under activation or inhibition of autophagic processes, in two different CCA cell lines, may improve chemosensitivity and reduce cell survival, respectively. A deeper understanding of these pathways, in both cancer and non-cancer cells, could unveil possible therapeutic targets to treat CCA patients.
Collapse
Affiliation(s)
- Elisabetta Ninfole
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona 60126, Italy
| |
Collapse
|
16
|
Yang Y, Bai L, Liao W, Feng M, Zhang M, Wu Q, Zhou K, Wen F, Lei W, Zhang N, Huang J, Li Q. The role of non-apoptotic cell death in the treatment and drug-resistance of digestive tumors. Exp Cell Res 2021; 405:112678. [PMID: 34171351 DOI: 10.1016/j.yexcr.2021.112678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
Tumor cell apoptosis evasion is one of the main reasons for easy metastasis occurrence, chemotherapy resistance, and the low five-year survival rate of digestive system tumors. Current research has shown that non-apoptotic cell death plays an important role in tumors of the digestive system. Therefore, increasing the proportion of non-apoptotic tumor cells is one of the effective methods of improving therapeutic efficacies for digestive system tumors. Non-apoptotic cell death modes mainly include autophagic cell death, pyroptosis, ferroptosis, in addition to other cell death modes. This review covers a systematic review relating to the research progress made into autophagic cell death, pyroptosis, ferroptosis, and other cell death modes in the treatment of digestive system tumors. It also highlights how treatment is a reasonable prospect based on clinical experience and provides reliable guidance for the further development of digestive system tumor treatments.
Collapse
Affiliation(s)
- Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - LiangLiang Bai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Mengxi Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiuji Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Jiaxing Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Tumor Suppressive Effects of miR-124 and Its Function in Neuronal Development. Int J Mol Sci 2021; 22:ijms22115919. [PMID: 34072894 PMCID: PMC8198231 DOI: 10.3390/ijms22115919] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNA-124 (miR-124) is strongly expressed in neurons, and its expression increases as neurons mature. Through DNA methylation in the miR-124 promoter region and adsorption of miR-124 by non-coding RNAs, miR-124 expression is known to be reduced in many cancer cells, especially with high malignancy. Recently, numerous studies have focused on miR-124 due to its promising tumor-suppressive effects; however, the overview of their results is unclear. We surveyed the tumor-suppressive effect of miR-124 in glial cell lineage cancers, which are the most frequently reported cancer types involving miR-124, and in lung, colon, liver, stomach, and breast cancers, which are the top five causes of cancer death. Reportedly, miR-124 not only inhibits proliferation and accelerates apoptosis, but also comprehensively suppresses tumor malignant transformation. Moreover, we found that miR-124 exerts its anti-tumor effects by regulating a wide range of target genes, most notably STAT3 and EZH2. In addition, when compared to the original role of miR-124 in neuronal development, we found that the miR-124 target genes that contribute to neuronal maturation share similarities with genes that cause cancer cell metastasis and epithelial-mesenchymal transition. We believe that the two apparently unrelated fields, cancer and neuronal development, can bring new discoveries to each other through the study of miR-124.
Collapse
|
18
|
Tang C, Yuan P, Wang J, Zhang Y, Chang X, Jin D, Lei P, Lu Z, Chen B. MiR-192-5p regulates the proliferation and apoptosis of cholangiocarcinoma cells by activating MEK/ERK pathway. 3 Biotech 2021; 11:99. [PMID: 33552829 DOI: 10.1007/s13205-021-02650-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) is the second most common liver cancer, characterized by late diagnosis and fatal outcome. Although miR-192-5p has been shown to have a vital role in various cancers, its role in CCA is unknown. Here, we investigated the role of miR-192-5p in CCA cell proliferation and apoptosis, and elucidated its potential mechanism of action. METHODS The miR-192-5p expression in CCA tissues and cell lines was detected by real-time quantitative reverse transcription-polymerase chain reaction. Cell proliferation was analyzed using the cell counting Kit-8 and 5-bromodeoxyuridine staining assays, while apoptosis was examined by flow cytometry and the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay. Western blot analysis was used to measure the expression of cell proliferation and apoptosis-related proteins, as well as MEK/ERK signaling pathway-related proteins. RESULTS MiR-192-5p was highly expressed in CCA tissues and cell lines. Overexpression of miR-192-5p significantly promoted CCA proliferation, and inhibited apoptosis. The MEK inhibitor, PD98059, reversed these miR-192-5p-induced effects on MEK/ERK signaling-associated protein expression, proliferation promotion, and apoptosis inhibition in TFK-1 cells. CONCLUSION MiR-192-5p promotes proliferation and suppressed apoptosis of CCA cells via the MEK/ERK pathway, which may be a potential therapeutic strategy for CCA treatment.
Collapse
|
19
|
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M. An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 2021; 135:111198. [PMID: 33412388 DOI: 10.1016/j.biopha.2020.111198] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNA-124 (miR-124) is a copious miRNA in the brain, but it is expressed in a wide range of human/animal tissues participating in the pathogenesis of several disorders. Based on its important function in the development of the nervous system, abnormal expression of miR-124 has been detected in nervous system diseases including Alzheimer's disease, Parkinson's disease, Hypoxic-Ischemic Encephalopathy, Huntington's disease, and ischemic stroke. In addition to these conditions, miR-124 contributes to the pathogenesis of cardiovascular disorders, hypertension, and atherosclerosis. Besides, it has been shown to be down-regulated in a wide range of human cancers such as colorectal cancer, breast cancer, gastric cancer, glioma, pancreatic cancer, and other types of cancer. Yet, few studies have reported upregulation of miR-124 in some cancer types. In the current study, we describe the role of miR-124 in these malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020; 190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases.
Collapse
Affiliation(s)
- Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Daghagh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Ȍzkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Meng XL, Fu P, Wang L, Yang X, Hong G, Zhao X, Lao J. Increased EZH2 Levels in Anterior Cingulate Cortex Microglia Aggravate Neuropathic Pain by Inhibiting Autophagy Following Brachial Plexus Avulsion in Rats. Neurosci Bull 2020; 36:793-805. [PMID: 32346844 DOI: 10.1007/s12264-020-00502-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
After brachial plexus avulsion (BPA), microglia induce inflammation, initiating and maintaining neuropathic pain. EZH2 (enhancer of zeste homolog 2) has been implicated in inflammation and neuropathic pain, but the mechanisms by which it regulates neuropathic pain remain unclear. Here, we found that EZH2 levels were markedly upregulated during BPA-induced neuropathic pain in vivo and in vitro, stimulating pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) secretion in vivo. In rats with BPA-induced neuropathic pain, mechanical and cold hypersensitivities were induced by EZH2 upregulation and inhibited by EZH2 downregulation in the anterior cingulate cortex. Microglial autophagy was also significantly inhibited, with EZH2 inhibition activating autophagy and reducing neuroinflammation in vivo. However, this effect was impaired by inhibiting autophagy with 3-methyladenine, suggesting that the MTOR signaling pathway is a functional target of EZH2. These data suggest that EZH2 regulates neuroinflammation and neuropathic pain via a novel MTOR-mediated autophagy signaling pathway, providing a promising approach for managing neuropathic pain.
Collapse
Affiliation(s)
- Xiang-Lei Meng
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lin Wang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Xun Yang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Guanghui Hong
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Xin Zhao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China
| | - Jie Lao
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, 200032, China.
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, 200032, China.
| |
Collapse
|
22
|
Perez-Montoyo H. Therapeutic Potential of Autophagy Modulation in Cholangiocarcinoma. Cells 2020; 9:E614. [PMID: 32143356 PMCID: PMC7140412 DOI: 10.3390/cells9030614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a multistep catabolic process through which misfolded, aggregated or mutated proteins and damaged organelles are internalized in membrane vesicles called autophagosomes and ultimately fused to lysosomes for degradation of sequestered components. The multistep nature of the process offers multiple regulation points prone to be deregulated and cause different human diseases but also offers multiple targetable points for designing therapeutic strategies. Cancer cells have evolved to use autophagy as an adaptive mechanism to survive under extremely stressful conditions within the tumor microenvironment, but also to increase invasiveness and resistance to anticancer drugs such as chemotherapy. This review collects clinical evidence of autophagy deregulation during cholangiocarcinogenesis together with preclinical reports evaluating compounds that modulate autophagy to induce cholangiocarcinoma (CCA) cell death. Altogether, experimental data suggest an impairment of autophagy during initial steps of CCA development and increased expression of autophagy markers on established tumors and in invasive phenotypes. Preclinical efficacy of autophagy modulators promoting CCA cell death, reducing invasiveness capacity and resensitizing CCA cells to chemotherapy open novel therapeutic avenues to design more specific and efficient strategies to treat this aggressive cancer.
Collapse
|
23
|
Lv P, Luo YF, Zhou WY, Liu B, Zhou Z, Shi YZ, Huang R, Peng C, He ZL, Wang J, Zhang HH, Nie SD. miR-373 inhibits autophagy and further promotes apoptosis of cholangiocarcinoma cells by targeting ULK1. Kaohsiung J Med Sci 2020; 36:429-440. [PMID: 32125086 DOI: 10.1002/kjm2.12191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Intrahepatic cholangiocarcinoma is a malignant tumor originating from intrahepatic bile ducts. Surgical therapy, radiotherapy, and chemotherapy are taken to treat this disease, but it is prone to recurrence and metastasis, with poor prognosis. Therefore, it is of great significance to explore new targets and molecular mechanisms for the development of cholangiocarcinoma cells. Clinical cholangiocarcinoma tissues from patients and four human cholangiocarcinoma cell lines were analyzed for microRNA-373 (miR-373) expression. For investigating whether miR-373 directly modulated unc-51 like autophagy activating kinase 1 (ULK1), dual-luciferase reporter assay was performed. In addition, CCK-8 assay, flow cytometry, western blot, and immunofluorescence were applied to evaluate the proliferation, apoptosis, and autophagy of cholangiocytic hepatocellular carcinoma cells. miR-373 downregulation was observed in clinical tissues and cell lines of cholangiocarcinoma. Overexpression of miR-373 reduced proliferation, enhanced apoptosis, and raised expression levels of pro-apoptosis proteins including BCL2 associated X (Bax), Caspase-3, and Caspase-9. Moreover, overexpression of miR-373 downregulated expression levels of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and promoted P62 expression on mRNA and protein levels. After miR-373 knockdown, all indexes of apoptosis and autophagy mentioned above were reversed. Luciferase activity was decreased after cotransfection of miR-373 mimic and wild-type ULK1 vector. Also, miR-373 overexpression inhibited ULK1 expression. Importantly, overexpression of miR-373 weakened expressions of ULK1, LC3, Beclin-1, and Bcl-2, and enhanced expressions of P62, Bax, Caspase-3, and Caspase-9. miR-373 mimic treatment and subsequent ULK1 overexpression, induced reverse regulation in expressions of these proteins, compared with overexpression of miR-373 only. miR-373 targeted ULK1 to initiate inhibition of autophagy and subsequent promotion of apoptosis in cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Pin Lv
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China.,Research Laboratory of Biliary Diseases, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Yi-Fan Luo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China.,Research Laboratory of Biliary Diseases, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Wen-Yi Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China.,Research Laboratory of Biliary Diseases, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Ben Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China.,Research Laboratory of Biliary Diseases, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Zheng Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Yong-Zhong Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Ren Huang
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China.,Research Laboratory of Biliary Diseases, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Zi-Li He
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China.,Laboratory of Hepatobiliary Molecular Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Jun Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Hong-Hui Zhang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Sheng-Dan Nie
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
24
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
25
|
Chen T, Lei S, Zeng Z, Pan S, Zhang J, Xue Y, Sun Y, Lan J, Xu S, Mao D, Guo B. MicroRNA‑137 suppresses the proliferation, migration and invasion of cholangiocarcinoma cells by targeting WNT2B. Int J Mol Med 2020; 45:886-896. [PMID: 31985024 PMCID: PMC7015134 DOI: 10.3892/ijmm.2020.4474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
It is widely known that abnormal regulation of microRNAs (miRNAs/miRs) may contribute to the occurrence or development of tumors. The objective of the present study was to elucidate the function and underlying mechanism of miR-137 in the progression of cholangiocarcinoma (CCA). The expression levels of miR-137 in CCA tissues and cell lines were measured using reverse transcription-quantitative PCR. The role of miR-137 in the proliferation of CCA cells was assessed using the Cell Counting Kit-8 assay, colony formation assay and cell cycle distribution analysis, while its effects on the migration and invasion of CCA cells were evaluated using Transwell assays. The function of miR-137 on CCA growth in vivo was also investigated using a xenograft mouse model. Furthermore, the association between miR-137 and Wnt family member 2B (WNT2B) was analyzed using bioinformatics, double luciferase assay and western blotting. It was verified that the expression of miR-137 was low in CCA tissues and cell lines, whereas increased expression of miR-137 significantly suppressed cell proliferation, decreased colony formation ability and induced G1 phase arrest. miR-137 overexpression suppressed the migration and invasion ability of TFK-1 and HuCCT1 cells. Furthermore, the results of the xenograft mouse model assays revealed that miR-137 overexpression decreased tumor growth in vivo. The results of bioinformatics analysis and dual luciferase reporter assays demonstrated that WNT2B is directly regulated by miR-137. The expression of WNT2B and Wnt-pathway-related proteins was decreased when miR-137 was overexpressed. Restoring the expression of WNT2B notably reversed the inhibitory effect of miR-137 on CCA cells. Therefore, the findings of the present study demonstrated that miR-137 acts as a suppressor in CCA and inhibits CCA cell proliferation, migration and invasion through suppressing the expression of WNT2B.
Collapse
Affiliation(s)
- Tengxiang Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shutao Pan
- Department of Biliary‑Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430060, P.R. China
| | - Jinjuan Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yan Xue
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yuanmei Sun
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Jinzhi Lan
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Su Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Dahua Mao
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medical Science, Guiyang, Guizhou 550009, P.R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| |
Collapse
|
26
|
Moghadasi M, Alivand M, Fardi M, Moghadam KS, Solali S. Emerging molecular functions of microRNA-124: Cancer pathology and therapeutic implications. Pathol Res Pract 2020; 216:152827. [PMID: 31983567 DOI: 10.1016/j.prp.2020.152827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 01/18/2020] [Indexed: 12/23/2022]
Abstract
MicroRNAs are characterized as small, single-stranded, non-coding RNA molecules that bind to their target mRNA to prevent protein synthesis. MicroRNAs regulate various normal processes; however, they are aberrantly regulated in many cancers. They control the expression of various genes, including cancer-related genes. This causes microRNAs to be considered as a good target for further investigations for designing novel therapeutic strategies. Since miR124 is known for some time already, it has a tumor-suppressing role in various cancers. Numerous studies indicate its definite roles in malignant processes such as epithelial-to-mesenchymal transition, cell cycle arrest, metastasis, cancer stem cell formation and induction of apoptosis. However, some studies have indicated a dual role for miR-124 in oncogenic processes like autophagy and multi-drug resistance. In this article, we will review recent researches on the biological functions and clinical implications of miR-124. Subsequently, we will discuss future perspectives in terms of the roles of this miRNA in cancers.
Collapse
Affiliation(s)
- Maryam Moghadasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Fardi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Epigenetic Control of Autophagy in Cancer Cells: A Key Process for Cancer-Related Phenotypes. Cells 2019; 8:cells8121656. [PMID: 31861179 PMCID: PMC6952790 DOI: 10.3390/cells8121656] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although autophagy is a well-known and extensively described cell pathway, numerous studies have been recently interested in studying the importance of its regulation at different molecular levels, including the translational and post-translational levels. Therefore, this review focuses on the links between autophagy and epigenetics in cancer and summarizes the. following: (i) how ATG genes are regulated by epigenetics, including DNA methylation and post-translational histone modifications; (ii) how epidrugs are able to modulate autophagy in cancer and to alter cancer-related phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and; (iii) how epigenetic enzymes can also regulate autophagy at the protein level. One noteable observation was that researchers most often reported conclusions about the regulation of the autophagy flux, following the use of epidrugs, based only on the analysis of LC3B-II form in treated cells. However, it is now widely accepted that an increase in LC3B-II form could be the consequence of an induction of the autophagy flux, as well as a block in the autophagosome-lysosome fusion. Therefore, in our review, all the published results describing a link between epidrugs and autophagy were systematically reanalyzed to determine whether autophagy flux was indeed increased, or inhibited, following the use of these potentially new interesting treatments targeting the autophagy process. Altogether, these recent data strongly support the idea that the determination of autophagy status could be crucial for future anticancer therapies. Indeed, the use of a combination of epidrugs and autophagy inhibitors could be beneficial for some cancer patients, whereas, in other cases, an increase of autophagy, which is frequently observed following the use of epidrugs, could lead to increased autophagy cell death.
Collapse
|
28
|
Shen C, Hua H, Gu L, Cao S, Cai H, Yao X, Chen X. miR-124 Functions As A Melanoma Tumor Suppressor By Targeting RACK1. Onco Targets Ther 2019; 12:9975-9986. [PMID: 31819494 PMCID: PMC6875257 DOI: 10.2147/ott.s225120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background miRNAs are small noncoding RNAs that function as posttranscriptional regulators during development and disease. Aberrant expression of miRNAs has been associated with various types of malignant tumors. Decreased levels of miR-124 have been observed in human cancers. RACK1 is a scaffold protein that acts as an oncogene in various human cancers. The association between miR-124 and RACK1 in melanoma has not been characterized. Materials and methods Real-time quantitative PCR was used to analyze RACK1 and miR-124 expression in melanoma tissue and cell lines. Dual-Luciferase reporter assay was performed to evaluate the effect of miR-124 inhibition on RACK1 expression. The effects of miR-124 on RACK1 in melanoma cell lines were evaluated using Western blot analysis and immunocytochemical staining. Wound-healing, transwell, and MTT assays, and annexin V-fluorescein isothiocyanate/propidium iodide followed by flow cytometry were used to evaluate the effects of miR-124 on RACK1-mediated proliferation, migration, invasion, and apoptosis of melanoma cells. Results The expression of miR-124 in melanoma tissue was lower than that in normal skin tissue, and the expression of RACK1 was higher in melanoma tissue than that in normal skin tissue. Analysis using Dual-Luciferase reporter assay showed that RACK1 was a direct target of miR-124. Western blot and immunocytochemical staining showed that the expression of RACK1 was significantly inhibited by miR-124 in both A375 and A875 melanoma cells. Furthermore, the results of functional experiments showed that degradation of RACK1 by miR-124 inhibited proliferation, migration, and invasion of melanoma cells, and promoted melanoma cell apoptosis. Conclusion The results suggested that miR-124 affected melanoma cells by directly targeting RACK1. miR-124 and RACK1 may be biomarkers for clinical diagnosis, and prognostic factors of human melanoma. Furthermore, miR-124 and RACK1 may be targets for the treatment of melanoma.
Collapse
Affiliation(s)
- Congcong Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Hui Hua
- Department of Dermatology, The Third People's Hospital of Nantong, Nantong 226001, People's Republic of China
| | - Lixiong Gu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Shuanglin Cao
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Hengji Cai
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Xiaodong Yao
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| |
Collapse
|
29
|
Zheng M, Cao MX, Luo XJ, Li L, Wang K, Wang SS, Wang HF, Tang YJ, Tang YL, Liang XH. EZH2 promotes invasion and tumour glycolysis by regulating STAT3 and FoxO1 signalling in human OSCC cells. J Cell Mol Med 2019; 23:6942-6954. [PMID: 31368152 PMCID: PMC6787444 DOI: 10.1111/jcmm.14579] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
The enhancer of zeste homolog 2 (EZH2), known as a member of the polycomb group (PcG) proteins, is an oncogene overexpressed in a variety of human cancers. Here, we found that EZH2 correlated with poor survival of oral squamous cell carcinoma (OSCC) patients using immunohistochemistry staining. EZH2 overexpression led to a significant induction in tumour glycolysis, Epithelial‐mesenchymal transition (EMT), migration and invasion of OSCC cells. Conversely, silencing of EZH2 inhibited tumour glycolysis, EMT, migration and invasion in OSCC cells. Ectopic overexpression of EZH2 increased phosphorylation of STAT3 at pY705 and decreased FoxO1 expression, and FoxO1 expression was enhanced when inhibiting STAT3. In addition, EZH2 overexpression led to a significant decrease in FoxO1 mRNA levels in nude mice xenograft. These results indicated that regulation of EZH2 might have the potential to be targeted for OSCC treatment.
Collapse
Affiliation(s)
- Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Jie Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hao-Fan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Wang Z, Dai J, Yan J, Zhang Y, Yin Z. Targeting EZH2 as a novel therapeutic strategy for sorafenib-resistant thyroid carcinoma. J Cell Mol Med 2019; 23:4770-4778. [PMID: 31087496 PMCID: PMC6584518 DOI: 10.1111/jcmm.14365] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
Thyroid carcinoma is the most common endocrine malignancy. Surgery, post‐operative selective iodine‐131 and thyroid hormone suppression were the most common methods for the therapy of thyroid carcinoma. Although most patients with differentiated thyroid carcinoma (DTC) showed positive response for these therapeutic methods, some patients still have to face the radioactive iodine (RAI)‐refractory problems. Sorafenib is an oral multikinase inhibitor for patients with advanced RAI refractory DTC. However, the side effects and drug resistance of sorafenib suggest us to develop novel drugs and strategies for the therapy of thyroid carcinoma. In this study, we firstly found that patients with sorafenib resistance showed no significant change in rapidly accelerated fibrosarcoma and VEGFR expression levels compared with sorafenib sensitive patients. Moreover, a further miRNAs screen by qRT‐PCR indicated that miR‐124‐3p and miR‐506‐3p (miR‐124/506) were remarkably reduced in sorafenib insensitive patients. With a bioinformatics prediction and functional assay validation, we revealed that enhancer of zeste homolog 2 (EZH2) was the direct target for miR‐124/506. Interestingly, we finally proved that the sorafenib resistant cells regained sensitivity for sorafenib by EZH2 intervention with miR‐124/506 overexpression or EZH2 inhibitor treatment in vitro and in vivo, which will lead to the decreased tri‐methylation at lysine 27 of histone H3 (H3K27me3) and increased acetylated lysine 27 of histone H3 (H3K27ac) levels. Therefore, we conclude that the suppression of EZH2 represents a potential target for thyroid carcinoma therapy.
Collapse
Affiliation(s)
- Zhengshi Wang
- Thyroid Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai Center for Thyroid Diseases, Shanghai, China
| | - Jiaqi Dai
- Thyroid Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai Center for Thyroid Diseases, Shanghai, China
| | - Jie Yan
- Thyroid Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai Center for Thyroid Diseases, Shanghai, China
| | - Yun Zhang
- Thyroid Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai Center for Thyroid Diseases, Shanghai, China
| | - Zhiqiang Yin
- Thyroid Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai Center for Thyroid Diseases, Shanghai, China
| |
Collapse
|
31
|
Yao L, Zhu Z, Wu J, Zhang Y, Zhang H, Sun X, Qian C, Wang B, Xie L, Zhang S, Lu G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease. FASEB J 2019; 33:8648-8665. [PMID: 30995872 DOI: 10.1096/fj.201900363r] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and nonmotor symptoms due to the selective loss of midbrain dopaminergic neurons. The evidence for a chronic inflammatory reaction mediated by microglial cells in the brain is particularly strong in PD. In our previous study, we have shown that brain-specific microRNA-124 (miR-124) is significantly down-regulated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD and that it can also inhibit neuroinflammation during the development of PD. However, further investigation is required to understand whether the abnormal expression of miR-124 regulates microglial activation. In this study, we found that the expression of sequestosome 1 (p62) and phospho-p38 mitogen-activated protein kinases (p-p38) showed a significant increase in LPS-treated immortalized murine microglial cell line BV2 cells in an MPTP-induced mouse model of PD. Knockdown of p62 could suppress the secretion of proinflammatory cytokines and p-p38 of microglia. Besides, inhibition of p38 suppressed the secretion of proinflammatory cytokines and promoted autophagy in BV2 cells. Moreover, our study is the first to identify a unique role of miR-124 in mediating the microglial inflammatory response by targeting p62 and p38 in PD. In the microglial culture supernatant transfer model, the knockdown of p62 in BV2 cells prevented apoptosis and death of human neuroblastoma cell lines SH-SY5Y (SH-SY5Y) cells following microglia activation. In addition, the exogenous delivery of miR-124 could suppress p62 and p-p38 expression and could also attenuate the activation of microglia in the substantia nigra par compacta of MPTP-treated mice. Taken together, our data suggest that miR-124 could inhibit neuroinflammation during the development of PD by targeting p62, p38, and autophagy, indicating that miR-124 could be a potential therapeutic target for regulating the inflammatory response in PD.-Yao, L., Zhu, Z., Wu, J., Zhang, Y., Zhang, H., Sun, X., Qian, C., Wang, B., Xie, L., Zhang, S., Lu, G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Zhiyuan Zhu
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Jiayu Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhou Zhang
- Tarbut V'Torah Community Day School, Irvine, California, USA
| | - Hongbo Zhang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Chen Qian
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Linghai Xie
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Liu X, Wei J, Ma Z, He Y. Rapamycin- and starvation-induced autophagy are associated with miRNA dysregulation in A549 cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:393-401. [PMID: 30908573 DOI: 10.1093/abbs/gmz022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 02/03/2019] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) are short (20-23 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. In recent years, deep sequencing of the transcription is being increasingly utilized with the promise of higher sensitivity for the identification of differential expression patterns as well as the opportunity to discover new transcripts, including new alternative isoforms and miRNAs. In this study, miRNAs from A549 cells treated with/without rapamycin or starvation were subject to genome-wide deep sequencing. A total of 1534 miRNAs were detected from the rapamycin- and starvation-treated A549 cells. Among them, 31 miRNAs were consistently upregulated and 131 miRNAs were downregulated in the treated cells when compared with the untreated cells. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of the predicted target genes of the most significantly differentially expressed miRNAs revealed that the autophagy-related miRNAs are involved in cancer pathway. Taken together, our findings indicate that the underlying mechanism responsible for autophagy is associated with dysregulation of miRNAs in rapamycin- or starvation-induced A549 cells.
Collapse
Affiliation(s)
- Xiaomin Liu
- School of Environmental Science and Engineering, Shanghai University, Shanghai, China
- Lab for Non-coding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiali Wei
- Lab for Non-coding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhongliang Ma
- Lab for Non-coding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanyun He
- Lab for Non-coding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
33
|
Ke PY. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20:E300. [PMID: 30642133 PMCID: PMC6358975 DOI: 10.3390/ijms20020300] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a catabolic process by which eukaryotic cells eliminate cytosolic materials through vacuole-mediated sequestration and subsequent delivery to lysosomes for degradation, thus maintaining cellular homeostasis and the integrity of organelles. Autophagy has emerged as playing a critical role in the regulation of liver physiology and the balancing of liver metabolism. Conversely, numerous recent studies have indicated that autophagy may disease-dependently participate in the pathogenesis of liver diseases, such as liver hepatitis, steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma. This review summarizes the current knowledge on the functions of autophagy in hepatic metabolism and the contribution of autophagy to the pathophysiology of liver-related diseases. Moreover, the impacts of autophagy modulation on the amelioration of the development and progression of liver diseases are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
34
|
Camero S, Ceccarelli S, De Felice F, Marampon F, Mannarino O, Camicia L, Vescarelli E, Pontecorvi P, Pizer B, Shukla R, Schiavetti A, Mollace MG, Pizzuti A, Tombolini V, Marchese C, Megiorni F, Dominici C. PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines. J Cancer Res Clin Oncol 2019; 145:137-152. [PMID: 30357520 PMCID: PMC6326011 DOI: 10.1007/s00432-018-2774-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE PARP inhibitors (PARPi) are used in a wide range of human solid tumours but a limited evidence is reported in rhabdomyosarcoma (RMS), the most frequent childhood soft-tissue sarcoma. The cellular and molecular effects of Olaparib, a specific PARP1/2 inhibitor, and AZD2461, a newly synthesized PARP1/2/3 inhibitor, were assessed in alveolar and embryonal RMS cells both as single-agent and in combination with ionizing radiation (IR). METHODS Cell viability was monitored by trypan blue exclusion dye assays. Cell cycle progression and apoptosis were measured by flow cytometry, and alterations of specific molecular markers were investigated by, Real Time PCR, Western blotting and immunofluorescence experiments. Irradiations were carried out at a dose rate of 2 Gy (190 UM/min) or 4 Gy (380 UM/min). Radiosensitivity was assessed by using clonogenic assays. RESULTS Olaparib and AZD2461 dose-dependently reduced growth of both RH30 and RD cells by arresting growth at G2/M phase and by modulating the expression, activation and subcellular localization of specific cell cycle regulators. Downregulation of phospho-AKT levels and accumulation of γH2AX, a specific marker of DNA damage, were significantly and persistently induced by Olaparib and AZD2461 exposure, this leading to apoptosis-related cell death. Both PARPi significantly enhanced the effects of IR by accumulating DNA damage, increasing G2 arrest and drastically reducing the clonogenic capacity of RMS-cotreated cells. CONCLUSIONS This study suggests that the combined exposure to PARPi and IR might display a role in the treatment of RMS tumours compared with single-agent exposure, since stronger cytotoxic effects are induced, and compensatory survival mechanisms are prevented.
Collapse
Affiliation(s)
- Simona Camero
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Olga Mannarino
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Lucrezia Camicia
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Barry Pizer
- Department of Oncology, Alder Hey Children’s NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Amalia Schiavetti
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Maria Giovanna Mollace
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca Megiorni
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Carlo Dominici
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
35
|
Ma X, Ning S. Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytother Res 2018; 33:81-89. [PMID: 30251280 DOI: 10.1002/ptr.6201] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a pivotal role in breast cancer progression. Cyanidin-3-glucoside (C3G), one of the most widely distributed anthocyanins in edible fruits, shows antioxidative and anti-inflammatory property as well as induction of breast cancer cells apoptosis. However, the effect of C3G on breast cancer-induced angiogenesis remains unknown. In the present study, we found that C3G could attenuate breast cancer-induced angiogenesis via inhibiting VEGF, a key cytokine for angiogenesis, expression and secretion. Furthermore, signal transducer and activator of transcription 3 (STAT3) could transcriptionally activate VEGF, and C3G reduced STAT3 expression at both mRNA and protein level. Subsequently, our data showed that C3G induced miR-124 expression. Moreover, miR-124 could directly repress STAT3 expression, and miR-124-mediated STAT3 down-regulation was responsible for the inhibition of C3G on VEGF and angiogenesis. Taken together, we supplied more evidence to the anti-breast cancer property of C3G.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Health Education and Administration, Jinhua Municipal Central Hospital, Jinhua, China
| | - Shilong Ning
- Department of Clinical Nutrition, Jinhua Municipal Central Hospital, Jinhua, China
| |
Collapse
|
36
|
Moazeni-Roodi A, Hashemi M. Association between miR-124-1 rs531564 polymorphism and risk of cancer: An updated meta-analysis of case-control studies. EXCLI JOURNAL 2018; 17:608-619. [PMID: 30108465 PMCID: PMC6088220 DOI: 10.17179/excli2018-1419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022]
Abstract
Many studies examined the association between miR-124-1 rs531564 polymorphism and the risk of some human cancers, but the findings remain controversial. This update meta-analysis aimed to validate the association between rs531564 polymorphism of miR-124-1 and cancer risk. Eligible studies including 6,502 cancer cases and 7,213 controls were documented by searching Web of Science, PubMed, Scopus, and Google scholar databases. Pooled odds ratios (ORs) with 95 % confidence intervals (CIs) were estimated to quantitatively evaluate the association between rs531564 variant and cancer risk. The results indicated that rs531564 variant significantly decreased the risk of cancer in homozygous codominant (OR=0.54, 95 % CI=0.43-0.69, p<0.00001, GG vs CC), dominant (OR=0.84, 95 % CI=0.72-0.99, p=0.03, CG+GG vs CC), recessive (OR=0.65, 95 % CI=0.54-0.78, p<0.00001, GG vs CG+CC), and allele (OR=0.84, 95 % CI=0.73-0.96, p=0.008, G vs C) genetic model. Stratified analysis by cancer type revealed that rs531564 variant was associated with gastric cancer, cervical cancer, esophageal squamous cell carcinoma and colorectal cancer risk. In summary, the findings of this meta-analysis support an association between miR-124-1 rs531564 polymorphism and cancer risk. Larger and well-designed studies are required to estimate this association in detail.
Collapse
Affiliation(s)
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|