1
|
Downregulation of glob1 mitigates human tau mediated neurotoxicity by restricting heterochromatin loss and elevating the autophagic response in drosophila. Mol Biol Rep 2022; 49:6581-6590. [PMID: 35633418 DOI: 10.1007/s11033-022-07498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human neuronal tauopathies are typically characterized by the accumulation of hyperphosphorylated tau in the forms of paired helical filaments and/or neurofibrillary tangles in the brain neurons. Tau-mediated heterochromatin loss and subsequent global transcriptional upsurge have been demonstrated as one of the key factors that promotes tau toxicity. We have reported earlier that expression of human tau-transgene in Drosophila induces the expression of glob1, and its restored level restricts tau etiology by regulating tau hyperphosphorylation and ROS generation via GSK-3β/p-Akt and Nrf2-keap1-ARE pathways, respectively. In view of this noted capability of glob1 in regulation of oxidative stress, and involvement of ROS in chromatin remodeling; we investigate if downregulation of glob1 restores tau-mediated heterochromatin loss in order to alleviate neurotoxicity. METHODS AND RESULTS The tauV337M transgene was expressed in Drosophila eye by utilizing GAL4/UAS system. Expression of glob1 was depleted in tauV337M expressing tissues by co-expressing an UAS-glob1RNAi transgene by GMR-Gal4 driver. Immunostaining and wstern blot analysis suggested that tissue-specific downregulation of glob1 restores the cellular level of CBP and minimizes tau-mediated heterochromatin loss. It also assists in mounting an improved protective autophagic response to alleviate the human tau-induced neurotoxicity in Drosophila tauopathy models. CONCLUSIONS Our study unfolds a novel aspect of the multitasking globin protein in restricting the pathogenesis of neuronal tauopathies. Interestingly, due to notable similarities between Drosophila glob1 and human globin gene(s), our findings may be helpful in developing novel therapeutic approaches against tauopathies.
Collapse
|
2
|
Prothmann A, Hoffmann FG, Opazo JC, Herbener P, Storz JF, Burmester T, Hankeln T. The Globin Gene Family in Arthropods: Evolution and Functional Diversity. Front Genet 2020; 11:858. [PMID: 32922435 PMCID: PMC7457136 DOI: 10.3389/fgene.2020.00858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/14/2020] [Indexed: 01/23/2023] Open
Abstract
Globins are small heme-proteins that reversibly bind oxygen. Their most prominent roles in vertebrates are the transport and storage of O2 for oxidative energy metabolism, but recent research has suggested alternative, non-respiratory globin functions. In the species-rich and ecologically highly diverse taxon of arthropods, the copper-containing hemocyanin is considered the main respiratory protein. However, recent studies have suggested the presence of globin genes and their proteins in arthropod taxa, including model species like Drosophila. To systematically assess the taxonomic distribution, evolution and diversity of globins in arthropods, we systematically searched transcriptome and genome sequence data and found a conserved, widespread occurrence of three globin classes in arthropods: hemoglobin-like (HbL), globin X (GbX), and globin X-like (GbXL) protein lineages. These globin types were previously identified in protostome and deuterostome animals including vertebrates, suggesting their early ancestry in Metazoa. The HbL genes show multiple, lineage-specific gene duplications in all major arthropod clades. Some HbL genes (e.g., Glob2 and 3 of Drosophila) display particularly fast substitution rates, possibly indicating the evolution of novel functions, e.g., in spermatogenesis. In contrast, arthropod GbX and GbXL globin genes show high evolutionary stability: GbXL is represented by a single-copy gene in all arthropod groups except Brachycera, and representatives of the GbX clade are present in all examined taxa except holometabolan insects. GbX and GbXL both show a brain-specific expression. Most arthropod GbX and GbXL proteins, but also some HbL variants, include sequence motifs indicative of potential N-terminal acylation (i.e., N-myristoylation, 3C-palmitoylation). All arthropods except for the brachyceran Diptera harbor at least one such potentially acylated globin copy, confirming the hypothesis of an essential, conserved globin function associated with the cell membrane. In contrast to other animals, the fourth ancient globin lineage, represented by neuroglobin, appears to be absent in arthropods, and the putative arthropod orthologs of the fifth metazoan globin lineage, androglobin, lack a recognizable globin domain. Thus, the remarkable evolutionary stability of some globin variants is contrasted by occasional dynamic gene multiplication or even loss of otherwise strongly conserved globin lineages in arthropod phylogeny.
Collapse
Affiliation(s)
- Andreas Prothmann
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, Mainz, Germany
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi, MS, United States.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi, MS, United States
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Peter Herbener
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, Mainz, Germany
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, University of Mainz, Mainz, Germany
| |
Collapse
|
3
|
Nisha, Aggarwal P, Sarkar S. Adequate expression of Globin1 is required for development and maintenance of nervous system in Drosophila. Mol Cell Neurosci 2019; 100:103398. [DOI: 10.1016/j.mcn.2019.103398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/07/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022] Open
|