1
|
Zhang Y, Xu S, Jiang F, Hu M, Han Y, Wang Y, Liu Z. A comprehensive insight into the role of molecular pathways affected by the Angiopoietin and Tie system involved in hematological malignancies' pathogenesis. Pathol Res Pract 2023; 248:154677. [PMID: 37467636 DOI: 10.1016/j.prp.2023.154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Angiogenesis has been recognized as a critical factor in developing solid tumors and hematological malignancies. How angiogenesis affects the molecular pathways in malignancies is still a mystery. The angiopoietin family, one of the known molecular mediators for angiogenesis, encourages angiogenesis by attaching to Tie receptors on cell surfaces. Angiopoietin, Tie, and particularly the molecular pathways they mediate have all been the subject of recent studies that have established their diagnostic, prognostic, and therapeutic potential. Here, we've reviewed the function of molecular pathways impacted by the Angiogenin and Tie system in hematological malignancies.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
2
|
Lang W, Han X, Cai J, Chen F, Xu L, Zhong H, Zhong J. Ectopic viral integration Site-1 oncogene promotes NRAS pathway through epigenetic silencing of microRNA-124 in acute myeloid leukemia. Cell Signal 2022; 99:110402. [PMID: 35835333 DOI: 10.1016/j.cellsig.2022.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by genetic mutations that promote proliferation of myeloid progenitors and prevent their differentiation. Over-expression of Ectopic Viral Integration site-1(EVI-1) is related to the poor prognosis in myeloid leukemia, but the underlying mechanism remains unclear. METHODS Using qRT-PCR and western blotting, we quantified expressions of EVI-1, NRAS and ERK/p-ERK in leukemia cell lines and PBMCs. Using WTS-8 and cell cycle analysis, we further investigated whether downregulation of EVI-1 by siRNA can inhibit cell proliferation. Microscopic observation of peripheral blood cells from EVI-1 transgenic zebrafish and WT control were analyzed by Wright Giemsa staining. Using miR-seq, qPCR, dual-luciferase reporter and coimmunoprecipitation assays, we revealed the relationship between EVI-1, miR-124 and NRAS. RESULTS EVI-1 was highly expressed in both primary AML and leukemia cell lines (THP-1 and K562). In a transgenic zebrafish model, EVI-1 mediated higher mortality and induced immature hematopoietic cells in the blood circulation, suggesting its oncogenic role. Furthermore, our results suggested that EVI-1 upregulated NRAS expression, thereby activating the RAS/ERK pathway through epigenetic silencing of a potent NRAS suppressor, miR-124. In this study, we found that EVI1 physically interacts with Dnmt3a to form a protein complex that targets and binds to regulatory elements of miR-124. CONCLUSIONS Overall, the current findings demonstrate that EVI-1 overexpression converges on the regulation of miR-124 promoter methylation and activation of the RAS/ERK pathway in AML carcinogenesis, and suggest EVI-1 and/or miR-124 as therapeutic targets for this dismal disease.
Collapse
Affiliation(s)
- Wenjing Lang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Xiaofeng Han
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University.
| | - Lan Xu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
3
|
Sun R, Yu L, Xu K, Pu Y, Huang J, Liu M, Zhang J, Yin L, Pu Y. Evi1 involved in benzene-induced haematotoxicity via modulation of PI3K/mTOR pathway and negative regulation Serpinb2. Chem Biol Interact 2022; 354:109836. [PMID: 35092719 DOI: 10.1016/j.cbi.2022.109836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Benzene is a widely used chemical and an environmental pollutant. Exposure to benzene can cause blood diseases, but the mechanisms underlying benzene haematotoxicity have not been fully clarified. Ecotropic virus integration site-1 (Evi1), a transcription factor, plays important roles in normal haematopoiesis and haematological diseases. In this study, we investigated the role and mechanism of Evi1 in benzene-induced haematotoxicity. We found that benzene exposure significantly increased Evi1 level in white blood cells (WBCs) in occupational benzene workers as well as mouse bone marrow cells. Further in vitro results demonstrated that compared with control cells exposed to same 1,4-benzoquinone (1,4-BQ, an important active metabolite of benzene) concentration, Evi1 downregulation significantly reduced cell proliferation, and disrupted cell viability, apoptosis, erythroid and megakaryotic cell differentiation and cell cycle. Additionally, down-regulation of Evi1 suppressed phosphoinositide 3-kinase (PI3K)/mTOR signalling pathway and elevated its target gene Serpinb2 following 1,4-BQ exposure. Moreover, the PI3K activator could partially relieve the inhibitory effect of down-regulation of Evi1 on cell proliferation and increase cell arrest in in G2/M phase. What's more, downregulation of Serpinb2 could partially alleviate proliferation inhibition and reverse cell cycle changes in G0/G1 phase and S phase induced by Evi1 inhibition. In conclusion, our data revealed that Evi1 downregulation aggravated the inhibition of cell proliferation and arrested cells in the G0/G1 phase when exposed to 1,4-BQ, potentially by inactivating the PI3K/mTOR pathway and upregulating downstream target gene Serpinb2. Our study provides novel insights on mechanism by which Evi1 participates in benzene-induced haematotoxicity.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
4
|
Li L, Zhao W. The mutual regulatory loop between TPTEP1 and miR-1303 in leukemogenesis of acute myeloid leukemia. Cancer Cell Int 2021; 21:260. [PMID: 33985519 PMCID: PMC8117550 DOI: 10.1186/s12935-021-01966-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/30/2021] [Indexed: 02/08/2023] Open
Abstract
Background Non-coding RNAs (ncRNAs) have been identified as key regulators during the pathogenesis and development of cancers. However, most of ncRNAs have never been explored in acute myeloid leukemia (AML). Methods Gene expression was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Functional assays were performed to assess the cellular processes in AML cells. The relationship between genes was verified by means of a series of mechanism assays. Results Transmembrane phosphatase with tensin homology pseudogene 1 (TPTEP1) was notably downregulated in AML cells, and functionally acted as a proliferation-inhibitor. Additionally, TPTEP1 suppressed AML cell growth by inactivating c-Jun N-terminal kinase (JNK)/c-JUN signaling pathway. MicroRNA (MiR)-1303, as an oncogene, was predicted and validated as a target of c-JUN in AML cells. Also, TPTEP1 interacted with miR-1303 and they were mutually silenced by each other in AML cells. Furthermore, the effect of TPTEP1 overexpression on AML cell proliferation was counteracted under miR-1303 upregulation. Conclusion Our findings unmasked a feedback loop of TPTEP1/JNK/c-JUN/miR-1303 axis in AML cells, suggesting TPTEP1 and miR-1303 as potential targets for developing therapeutic strategies for AML patients. ![]()
Collapse
Affiliation(s)
- Li Li
- Department of Lymphoma, Sichuan Cancer Hospital & Institute, Sichun Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chendu, 610041, Sichuan, China
| | - Weidong Zhao
- Food Nutrition Center, West China Hospital, Sichun University, No.37, Guoxue Xiang, Wuhou District, Chendu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Lang W, Cai J, Chen F, Zhu J, Hu X, Zhong J. RNA-Seq analyses demonstrate EVI-1-induced morbid hematopoiesis and developmental abnormality in zebrafish were related with MAPK pathway. Hematol Oncol 2019; 37:326-329. [PMID: 30924173 DOI: 10.1002/hon.2609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjing Lang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Hu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|