1
|
Huang M, Wang L, Zhang Q, Zhou L, Liao R, Wu A, Wang X, Luo J, Huang F, Zou W, Wu J. Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals (Basel) 2024; 17:109. [PMID: 38256942 PMCID: PMC10820339 DOI: 10.3390/ph17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.
Collapse
Affiliation(s)
- Miao Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Ling Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Rui Liao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Xinle Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Jiesi Luo
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
- The Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education of China, Luzhou 646000, China
| |
Collapse
|
2
|
Investigation of the Active Compounds and Important Pathways of Huaiqihuang Granule for the Treatment of Immune Thrombocytopenia Using Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5984361. [PMID: 36660453 PMCID: PMC9845056 DOI: 10.1155/2023/5984361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Materials and Methods Compounds of HQHG were scanned by LC-MS/MS, and the target profiles of compounds were identified based on SwissTarget Prediction. ITP target proteins were collected from various databases. Then, KEGG pathway and GO enrichment analyses were performed to explore the signaling pathways related to HQHG for ITP. The PPI and drug-herbs-compounds-targets-pathways network were constructed using Cytoscape 3.7.2. Finally, Discovery studio software was used to confirm the key targets and active compounds from HQHG. Results A total of 187 interacting targets of 19 potentially active compounds in HQHG and 3837 ITP-related targets were collected. Then, 187 intersection targets were obtained. A total of 20 key targets including EGFR, CASP3, TNF, STAT3, and ERBB2 were identified through PPI network analysis. These targets were mainly focused on the biological processes of positive regulation of protein phosphorylation, cellular response to organonitrogen compound, and cellular response to nitrogen compound. 20 possible pathways of HQHG in the treatment of ITP were identified through KEGG enrichment. EGFR, CASP3, TNF, and STAT3 are the four most important target proteins, while adenosine, caffeic acid, ferulic acid, quercetin-3β-D-glucoside, rutin, scopoletin, and tianshic acid are the most important active compounds, which were validated by molecular docking simulation. Conclusion This study demonstrated that HQHG produced relief effects against ITP by regulating multitargets and multipathways with multicompounds. And the combined data provide novel insight of drug developing for ITP.
Collapse
|
3
|
Wan J, Wu Y, Huang L, Tian Y, Ji X, Abdelaziz MH, Cai W, Dineshkumar K, Lei Y, Yao S, Sun C, Su Z, Wang S, Xu H. ILC2-derived IL-9 inhibits colorectal cancer progression by activating CD8 + T cells. Cancer Lett 2021; 502:34-43. [PMID: 33429004 DOI: 10.1016/j.canlet.2021.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s), characterized by secretion of type 2 cytokines, regulate multiple immune responses. ILC2s are found in different tumor tissues, and ILC2-derived interleukin (IL)-4, IL-5, and IL-13 act on the cells in tumor microenvironment to participate in tumor progression. ILC2s are abundant in colorectal cancer (CRC) tissue, but the role of ILC2s in CRC remains unclear. In this study, we found that the percentage of ILC2s was higher in CRC tissue than in the adjacent normal tissue and that these ILC2s were the dominant IL-9-secreting cell-subsets in CRC tissue, as shown by flow cytometry analysis. ILC2s-derived IL-9 could activate CD8+ T cells to inhibit tumor growth, while anti-IL-9 reversed this effect. In vivo experiments showed that neutralizing ILC2s promoted tumor growth, while tumor inhibition occurred by intravenous injection of IL-9. In conclusion, our results demonstrated that ILC2-derived IL-9 could activate CD8+ T cells to promote anti-tumor effects in CRC.
Collapse
Affiliation(s)
- Jie Wan
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China; Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yinqiu Wu
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Tian
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | | | - Wei Cai
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Kesavan Dineshkumar
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yuqing Lei
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Shun Yao
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Sun
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China; Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China; Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|