1
|
Kotharkar P, Talukdar I, Ramanan SR, Ramesh K, Shastry A, Kowshik M. Hydroxyapatite nanoparticle mediated delivery of full length dystrophin gene as a potential therapeutic for the treatment of Duchenne muscular dystrophy. NANOSCALE 2025; 17:2078-2090. [PMID: 39651637 DOI: 10.1039/d4nr03906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by progressive muscle degeneration, primarily affecting young males. In this study, we investigated arginine-modified hydroxyapatite nanoparticles (R-HAp) as a novel non-viral vector for DMD gene therapy, particularly for delivering the large 18.8 kb dystrophin gene. Addressing the limitations of traditional adeno-associated viral vectors, R-HAp demonstrated efficient binding and delivery of the dystrophin plasmid to DMD patient-derived skeletal muscle cells. Using confocal imaging and RT-PCR analysis, our results showed effective gene delivery and expression in both mouse myotubes and patient-derived cells, with sustained expression evident up to 5 days post transfection. The patient-derived myotubes also showed dystrophin protein production 7 days post transfection. These findings suggest R-HAp nanoparticles as a promising and cost-effective alternative for DMD treatment, highlighting their potential for overcoming current gene therapy challenges.
Collapse
Affiliation(s)
- Pooja Kotharkar
- Biological Sciences Department, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, India.
| | - Indrani Talukdar
- Biological Sciences Department, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, India.
| | - Sutapa Roy Ramanan
- Chemical Engineering Department, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, India
| | | | - Arun Shastry
- Dystrophy Annihilation Research Trust, Bangalore, India
| | - Meenal Kowshik
- Biological Sciences Department, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, India.
| |
Collapse
|
2
|
Egorova TV, Polikarpova AV, Vassilieva SG, Dzhenkova MA, Savchenko IM, Velyaev OA, Shmidt AA, Soldatov VO, Pokrovskii MV, Deykin AV, Bardina MV. CRISPR-Cas9 correction in the DMD mouse model is accompanied by upregulation of Dp71f protein. Mol Ther Methods Clin Dev 2023; 30:161-180. [PMID: 37457303 PMCID: PMC10339130 DOI: 10.1016/j.omtm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.
Collapse
Affiliation(s)
- Tatiana V. Egorova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Anna V. Polikarpova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina A. Dzhenkova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina M. Savchenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Oleg A. Velyaev
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna A. Shmidt
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladislav O. Soldatov
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Mikhail V. Pokrovskii
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Alexey V. Deykin
- Marlin Biotech LLC, Sochi 354340, Russia
- Joint Center for Genetic Technologies, Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod 308015, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
3
|
Lu Y, Guan T, Wang S, Zhou C, Wang M, Wang X, Zhang K, Han X, Lin J, Tang Q, Wang C, Zhou W. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms. Bioorg Med Chem 2023; 83:117232. [PMID: 36940608 DOI: 10.1016/j.bmc.2023.117232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.
Collapse
Affiliation(s)
- Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China
| | - Shaobing Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Cui Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Meizhu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Jinchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., 201315 Shanghai, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
4
|
Krivonogova AS, Bruter AV, Makutina VA, Okulova YD, Ilchuk LA, Kubekina MV, Khamatova AY, Egorova TV, Mymrin VS, Silaeva YY, Deykin AV, Filatov MA, Isaeva AG. AAV infection of bovine embryos: Novel, simple and effective tool for genome editing. Theriogenology 2022; 193:77-86. [PMID: 36156427 DOI: 10.1016/j.theriogenology.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Adeno-associated viruses (AAV) are widely used in the field of genetically modified organism production. In this work, transduction of bovine embryos by AAV was selected as a potential approach to perform genetic modifications: we have used recombinant AAV to produce GFP-positive bovine embryos. Five different AAV serotypes were used to evaluate their ability to deliver genetic material into the bovine embryos. AAV9 serotype demonstrated minimal effectiveness (38,10%) as the genetic material transfer tool. Four other serotypes of AAVs (AAV1, AAV2, AAV6 and AAV-DJ) showed very close transduction efficiency (52,94-58,33%). CD209 is a C-type lectin receptor which is presented on the surface of macrophages and dendritic cells. CD209 recognizes a broad range of pathogens in a rather nonspecific manner. Production of CD209 knock-out is relevant for better understanding of infection mechanisms. Potentially, production of such knock-out may enable animals to become resistant to various infections. We have analyzed DNA samples from 22 blastocysts obtained after in vitro culture of zygotes subjected to recombinant AAV action. We have detected that 3 of 22 analyzed blastocysts contained mosaic CD209 frameshifts. Therefore, we have demonstrated proof of principle that application of AAV as a genome editing tool is an effective method for obtaining genetically modified cattle embryos.
Collapse
Affiliation(s)
- Anna S Krivonogova
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Valeria A Makutina
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuliya D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexandra Yu Khamatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Sochi, 354340, Russia
| | - Vladimir S Mymrin
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuliya Yu Silaeva
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey V Deykin
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Albina G Isaeva
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
5
|
Polikarpova AV, Egorova TV, Bardina MV. Genetically modified animal models of hereditary diseases for testing of gene-directed therapy. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.82618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disease-causing genes have been identified for many severe muscular and neurological genetic disorders. Advances in the gene therapy field offer promising solutions for drug development to treat these life-threatening conditions. Depending on how the mutation affects the function of the gene product, different gene therapy approaches may be beneficial. Gene replacement therapy is appropriate for diseases caused by mutations that result in the deficiency of the functional protein. Gene suppression strategy is suggested for disorders caused by the toxic product of the mutant gene. Splicing modulators, genome editing, and base editing techniques can be applied to disorders with different types of underlying mutations. Testing potential drugs in animal models of human diseases is an indispensable step of development. Given the specific gene therapy approach, appropriate animal models can be generated using a variety of technologies ranging from transgenesis to precise genome editing. In this review, we discuss technologies used to generate small and large animal models of the most common muscular and neurological genetic disorders. We specifically focus on animal models that were used to test gene therapies based on adeno-associated vectors and antisense nucleotides.
Collapse
|
6
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
7
|
Therapeutic potential of highly functional codon-optimized microutrophin for muscle-specific expression. Sci Rep 2022; 12:848. [PMID: 35039573 PMCID: PMC8764061 DOI: 10.1038/s41598-022-04892-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
High expectations have been set on gene therapy with an AAV-delivered shortened version of dystrophin (µDys) for Duchenne muscular dystrophy (DMD), with several drug candidates currently undergoing clinical trials. Safety concerns with this therapeutic approach include the immune response to introduced dystrophin antigens observed in some DMD patients. Recent reports highlighted microutrophin (µUtrn) as a less immunogenic functional dystrophin substitute for gene therapy. In the current study, we created a human codon-optimized µUtrn which was subjected to side-by-side characterization with previously reported mouse and human µUtrn sequences after rAAV9 intramuscular injections in mdx mice. Long-term studies with systemic delivery of rAAV9-µUtrn demonstrated robust transgene expression in muscles, with localization to the sarcolemma, functional improvement of muscle performance, decreased creatine kinase levels, and lower immunogenicity as compared to µDys. An extensive toxicity study in wild-type rats did not reveal adverse changes associated with high-dose rAAV9 administration and human codon-optimized µUtrn overexpression. Furthermore, we verified that muscle-specific promoters MHCK7 and SPc5-12 drive a sufficient level of rAAV9-µUtrn expression to ameliorate the dystrophic phenotype in mdx mice. Our results provide ground for taking human codon-optimized µUtrn combined with muscle-specific promoters into clinical development as safe and efficient gene therapy for DMD.
Collapse
|
8
|
El Andari J, Grimm D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol J 2020; 16:e2000025. [PMID: 32975881 DOI: 10.1002/biot.202000025] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last two decades, gene therapy vectors based on wild-type Adeno-associated viruses (AAV) are safe and efficacious in numerous clinical trials and are translated into three approved gene therapy products. Concomitantly, a large body of preclinical work has illustrated the power and potential of engineered synthetic AAV capsids that often excel in terms of an organ or cell specificity, the efficiency of in vitro or in vivo gene transfer, and/or reactivity with anti-AAV immune responses. In turn, this has created a demand for new, scalable, easy-to-implement, and plug-and-play platform processes that are compatible with the rapidly increasing range of AAV capsid variants. Here, the focus is on recent advances in methodologies for downstream processing and characterization of natural or synthetic AAV vectors, comprising different chromatography techniques and thermostability measurements. To illustrate the breadth of this portfolio, two chimeric capsids are used as representative examples that are derived through forward- or backwards-directed molecular evolution, namely, AAV-DJ and Anc80. Collectively, this ever-expanding arsenal of technologies promises to facilitate the development of the next AAV vector generation derived from synthetic capsids and to accelerate their manufacturing, and to thus boost the field of human gene therapy.
Collapse
Affiliation(s)
- Jihad El Andari
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany
| | - Dirk Grimm
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120, Heidelberg, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|