1
|
Zhang T, Gu Z, Ni R, Wang X, Jiang Q, Tao R. An Update on Gemcitabine-Based Chemosensitization Strategies in Pancreatic Ductal Adenocarcinoma. FRONT BIOSCI-LANDMRK 2023; 28:361. [PMID: 38179740 DOI: 10.31083/j.fbl2812361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 01/06/2024]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths, and chemotherapy is one of the most important treatments for pancreatic cancer. Unfortunately, pancreatic cancer cells can block chemotherapy drugs from entering the tumor. This is owing to interactions between the tumor's environment and the cancer cells. Here, we review the latest research on the mechanisms by which pancreatic cancer cells block the chemotherapy drug, gemcitabine. The results of our review can help identify potential therapeutic targets for the blocking of gemcitabine by pancreatic cancer cells and may provide new strategies to help chemotherapy drugs penetrate tumors.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Surgery, Bengbu Medical College, 233030 Bengbu, AnHui, China
| | - Zongting Gu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Ran Ni
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Xiao Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| | - Qitao Jiang
- Department of Surgery, Bengbu Medical College, 233030 Bengbu, AnHui, China
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310000 Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ding Y, Wang H, Liu J, Jiang H, Gong A, Xu M. MBD3 as a Potential Biomarker for Colon Cancer: Implications for Epithelial-Mesenchymal Transition (EMT) Pathways. Cancers (Basel) 2023; 15:3185. [PMID: 37370795 PMCID: PMC10296356 DOI: 10.3390/cancers15123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor EMT is a crucial event in tumor pathogenesis and progression. Previous research has established MBD3's significant role in pancreatic cancer EMT. However, MBD3's precise role in colon cancer remains unclear and warrants further investigation. Pan-cancer analysis revealed MBD3's differential expression in various tumors and its significant association with tumor occurrence, growth, and progression. Moreover, analysis of single-cell sequencing and clinical data for colon cancer revealed MBD3 expression's negative correlation with clinical indicators such as survival prognosis. Functional enrichment analysis confirmed the association between MBD3 and EMT in colon cancer. Pathological examinations, western blotting, and qRT-PCR in vitro and in vivo validated MBD3's differential expression in colon cancer. Transwell, CCK-8, clone formation, and in vivo tumorigenesis experiments confirmed MBD3's impact on migration, invasion, and proliferation. Our findings demonstrate MBD3 as a potential prognostic marker and therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yuntao Ding
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| | - Junqiang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| | - Han Jiang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| | - Aihua Gong
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| |
Collapse
|
3
|
Zhao Y, Qin C, Zhao B, Wang Y, Li Z, Li T, Yang X, Wang W. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res 2023; 42:122. [PMID: 37173787 PMCID: PMC10182699 DOI: 10.1186/s13046-023-02693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies worldwide. Increasing evidence suggests that the capacity for self-renewal, proliferation, and differentiation of pancreatic cancer stem cells (PCSCs) contribute to major challenges with current PC therapies, causing metastasis and therapeutic resistance, leading to recurrence and death in patients. The concept that PCSCs are characterized by their high plasticity and self-renewal capacities is central to this review. We focused specifically on the regulation of PCSCs, such as stemness-related signaling pathways, stimuli in tumor cells and the tumor microenvironment (TME), as well as the development of innovative stemness-targeted therapies. Understanding the biological behavior of PCSCs with plasticity and the molecular mechanisms regulating PC stemness will help to identify new treatment strategies to treat this horrible disease.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiaoying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
4
|
Mandalos NP, Dimou A, Gavala MA, Lambraki E, Remboutsika E. Craniofacial Development Is Fine-Tuned by Sox2. Genes (Basel) 2023; 14:genes14020380. [PMID: 36833308 PMCID: PMC9956624 DOI: 10.3390/genes14020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The precise control of neural crest stem cell delamination, migration and differentiation ensures proper craniofacial and head development. Sox2 shapes the ontogeny of the cranial neural crest to ensure precision of the cell flow in the developing head. Here, we review how Sox2 orchestrates signals that control these complex developmental processes.
Collapse
Affiliation(s)
- Nikolaos Panagiotis Mandalos
- University Research Institute of Maternal and Child Health & Precision Medicine, School of Medicine, National and Kapoditrian University of Athens, 115 27 Athens, Greece
- National Cancer Institute, Frederick, MD 21702, USA
| | - Aikaterini Dimou
- University Research Institute of Maternal and Child Health & Precision Medicine, School of Medicine, National and Kapoditrian University of Athens, 115 27 Athens, Greece
- Center for Translational Medicine and the Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Maria Angeliki Gavala
- University Research Institute of Maternal and Child Health & Precision Medicine, School of Medicine, National and Kapoditrian University of Athens, 115 27 Athens, Greece
- National Technical University of Athens, 157 80 Athens, Greece
| | - Efstathia Lambraki
- University Research Institute of Maternal and Child Health & Precision Medicine, School of Medicine, National and Kapoditrian University of Athens, 115 27 Athens, Greece
- Polytechnic School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Eumorphia Remboutsika
- University Research Institute of Maternal and Child Health & Precision Medicine, School of Medicine, National and Kapoditrian University of Athens, 115 27 Athens, Greece
- Thrivus Institute for Biomedical Science and Technology, Constellations Ave, Accra GT-336-4330, Ghana
- Correspondence:
| |
Collapse
|
5
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
6
|
Zhao Y, Yang M, Wang S, Abbas SJ, Zhang J, Li Y, Shao R, Liu Y. An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Front Oncol 2022; 12:854773. [PMID: 35296007 PMCID: PMC8918690 DOI: 10.3389/fonc.2022.854773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Sk Jahir Abbas
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
| | - Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| |
Collapse
|
7
|
Fatma H, Siddique HR, Maurya SK. The multiple faces of NANOG in cancer: a therapeutic target to chemosensitize therapy-resistant cancers. Epigenomics 2021; 13:1885-1900. [PMID: 34693722 DOI: 10.2217/epi-2021-0228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NANOG regulates self-renewal and pluripotency in embryonic cells, and its downregulation leads to cell differentiation. Recent studies have linked upregulation of NANOG in various cancers and the regulation of expression of different molecules, and vice versa, to induce proliferation, metastasis, invasion and chemoresistance. Thus NANOG is an oncogene that functions by inducing stem cells' circuitries and heterogeneity in cancers. Understanding NANOG's role in various cancers may lead to it becoming a therapeutic target to halt cancer progression. The NANOG network can also be targeted to resensitize resistant cancer cells to conventional therapies. The current review focuses on NANOG regulation in the various signaling networks leading to cancer progression and chemoresistance, and highlights the therapeutic aspect of targeting NANOG in various cancers.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Santosh K Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|