1
|
Kwas K, Szubert M, Wilczyński JR. Latest Update on lncRNA in Epithelial Ovarian Cancer-A Scoping Review. Cells 2025; 14:555. [PMID: 40214508 PMCID: PMC11988607 DOI: 10.3390/cells14070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides that do not encode proteins yet play critical roles in regulating gene expression at multiple levels, such as chromatin modification and transcription. These molecules are significantly engaged in cancer progression, development, metastasis, and chemoresistance. However, the function of lncRNAs in epithelial ovarian cancer (EOC) has not yet been thoroughly studied. EOC remains challenging due to its complex molecular pathogenesis, characterized by genetic and epigenetic alterations. Emerging evidence suggests that lncRNAs, such as XIST, H19, NEAT1, and MALAT1, are involved in EOC by modulating gene expression and signaling pathways, influencing processes like cell proliferation, invasion, migration, and chemoresistance. Despite extensive research, the precise mechanism of acting of lncRNAs in EOC pathogenesis and treatment resistance still needs to be fully understood, highlighting the need for further studies. This review aims to provide an updated overview of the current understanding of lncRNAs in EOC, emphasizing their potential as biomarkers and therapeutic targets. We point out the gaps in the knowledge regarding lncRNAs' influence on epithelial ovarian cancer (EOC), deliberating on new possible research areas.
Collapse
Affiliation(s)
- Katarzyna Kwas
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, Medical University of Lodz, 90-136 Łódź, Poland; (M.S.); (J.R.W.)
| | | | | |
Collapse
|
2
|
Floyd J, DeSanto K, Bitler BG, Brubaker LW. Polycomb Repressor Complex 1 (PRC1) in ovarian cancer: A scoping literature review. Crit Rev Oncol Hematol 2024; 202:104456. [PMID: 39033867 DOI: 10.1016/j.critrevonc.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
High grade serous carcinoma (HGSC) is the most common and the deadliest histologic subtype of epithelial ovarian cancer. HGSC is a therapeutic challenge, as it recurs in 80 % of patients diagnosed, often as chemoresistant disease. The mechanism of this chemoresistance is not fully elucidated, but it is partly attributed to the ability of HGSC to maintain a stem-like phenotype that enables development of resistance to current therapies. Polycomb Repressor Complexes 1 and 2 (PRC1/2) have been implicated in the maintenance of the stem cell compartment through silencing tumor suppressor genes and regulating stem cells. These complexes are comprised of multiple polycomb group (PcG) proteins that play a role in normal development, and when deregulated contribute to the development of cancer [2]. Proteins included in PRC1 include B lymphoma mouse Moloney leukemia virus insertion region (BMI1), RING1, and chromobox (CBX) proteins. We aimed to review each of the protein components of PRC1 and their mechanistic relationships to promoting chemoresistant recurrences and propagation of ovarian cancer. Where possible, we reviewed therapeutic investigations of these proteins. We utilized a scoping literature review through Covidence to identify 42 articles meeting criteria for inclusion. The authors identified four relevant articles and the Yale MeSH Analysis Grid Generator was used to establish additional keywords and heading terms. A medical librarian used these terms and articles to draft an initial search strategy within each of the following databases: MEDLINE, Embase, Cochrane Library, and Web of Science Core Collection, yielding 439 articles based on title and abstract. Abstracts were independently reviewed by the authors, identifying 77 articles for full text review, of which 35 were ultimately excluded, leaving 42 articles for full review. Our review identified the currently known mechanisms of the subunits of PRC1 that contribute to HGSC development, recurrence, and chemoresistance. By compiling a comprehensive review of available scientific knowledge, we support and direct further investigation into PRC1 that can affect meaningful advances in the treatment of HGSC.
Collapse
Affiliation(s)
- Jessica Floyd
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| | - Kristen DeSanto
- Strauss Health Sciences Library, University of Colorado, Anschutz Medical Campus, 12950 E Montview Blvd, Aurora, CO 80045, United States
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA
| | - Lindsay W Brubaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Shou J, Zhang C, Zheng X, Li Y, Wu P, Chen L, Wei X. LncRNA HCP5 Facilitates the Progression of Ovarian Cancer by Interacting with the PTBP1 Protein. Biochem Genet 2024; 62:3136-3154. [PMID: 38071681 PMCID: PMC11289333 DOI: 10.1007/s10528-023-10558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/22/2023] [Indexed: 07/31/2024]
Abstract
Ovarian cancer (OC) is a major gynecological malignancy with an annually increasing morbidity that poses a significant threat to the health of women worldwide. Most OC patients are diagnosed at an advanced stage. It is an urgent task to search for biomarkers for the diagnosis and treatment of OC. The lncRNA HCP5 (HCP5) was recently identified as an oncogene in several malignant tumors. However, the function of HCP5 in OC has rarely been reported. Herein, the levels of HCP5 and PTBP1 were found to be markedly increased in malignant OC tumor tissues and OC cell lines. In HCP5-silenced SKOV-3 and HEY cells, cell viability was markedly decreased, and the apoptosis rate was significantly increased, with more cells exhibiting G0/G1 arrest and increased expression of cleaved caspase-3 and cleaved caspase-9. Furthermore, the number of migrated cells, number of invaded cells, and migration distance were notably decreased by the knockdown of HCP5 in SKOV-3 cells and HEY cells. In the xenograft model established with SKOV-3 cells, the number of lung metastases, tumor growth, and Ki67 expression in tumor tissues were markedly decreased by the knockdown of HCP5, accompanied by an increased percentage of TUNEL-positive cells. HCP5 was found to be localized in the nucleus, and the interaction between HCP5 and PTBP1 was verified by RNA pull-down and RNA immunoprecipitation assays. Furthermore, in HCP5-overexpressing OC cells, the impacts of HCP5 on cell proliferation and apoptosis were significantly attenuated by the knockdown of PTBP1. Collectively, these results indicate that HCP5 facilitates the progression of OC by interacting with the PTBP1 protein.
Collapse
Affiliation(s)
- Jian Shou
- Department of Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728, North Yucai Road, Beigan Street, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Chuanling Zhang
- Department of Translational Medicine Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728, North Yucai Road, Beigan Street, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Xiaoyu Zheng
- Department of Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728, North Yucai Road, Beigan Street, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Yaowei Li
- Department of Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728, North Yucai Road, Beigan Street, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Peng Wu
- Department of Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728, North Yucai Road, Beigan Street, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - Long Chen
- Department of Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728, North Yucai Road, Beigan Street, Xiaoshan District, Hangzhou, 311200, Zhejiang, China
| | - XiuJun Wei
- Department of Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728, North Yucai Road, Beigan Street, Xiaoshan District, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
4
|
Guo X, Zhang J, Zeng J, Guo Y, Zhao L. MiR-525-5p inhibits diffuse large B cell lymphoma progression via the Myd88/NF-κB signaling pathway. PeerJ 2023; 11:e16388. [PMID: 37953776 PMCID: PMC10634338 DOI: 10.7717/peerj.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a B-cell lymphoma with a high degree of aggressiveness. Recently, evidence has shown that miR-525-5p is decreased in DLBCL, suggesting its possible involvement in tumor progression. In this study, miR-525-5p suppressed proliferation, invasion and clonogenicity, and increased apoptosis of U2932 cells, whereas miR-525-5p silencing enhanced tumor cell growth. Next, miR-525-5p targets the 3'-UTR of Myd88, and Myd88 protein was increased in lymphoma tissues. Similar to the miR-525-5p mimic, Myd88 siRNA suppressed proliferation, invasion, and clonogenicity, and enhanced apoptosis of U2932 cells. We observed that Myd88 reversed the inhibitory effect of miR-525-5p on tumor cell growth by transfecting cells with miR-525-5p mimics alone or together with Myd88 overexpression vector. In addition, in vivo studies have shown that compared to the control group, U2932 cells with upregulated miR-525-5p expression have a reduced ability to induce tumor formation. In conclusion, our results demonstrate that miR-525-5p inhibits the progression of DLBCL through the Myd88/NF-κB pathway, which largely fills the gap of previous studies, and our results may provide a new reference for the targeted treatment of DLBCL.
Collapse
Affiliation(s)
- Xiuchen Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingbo Zhang
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingya Zeng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yiwei Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Zhao
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
7
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 PMCID: PMC10298523 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece;
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Zhang C, Zhou Y, Zhang B, Sheng Z, Sun N, Yuan B, Wu X. Identification of lncRNA, miRNA and mRNA expression profiles and ceRNA Networks in small cell lung cancer. BMC Genomics 2023; 24:217. [PMID: 37098483 PMCID: PMC10131370 DOI: 10.1186/s12864-023-09306-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/11/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a highly lethal malignant tumor. It accounts for approximately 15% of newly diagnosed lung cancers. Long non-coding RNAs (lncRNAs) can regulate gene expression and contribute to tumorigenesis through interactions with microRNAs (miRNAs). However, there are only a few studies reporting the expression profiles of lncRNAs, miRNAs, and mRNAs in SCLC. Also, the role of differentially expressed lncRNAs, miRNAs, and mRNAs in relation to competitive endogenous RNAs (ceRNA) network in SCLC remain unclear. RESULTS In the present study, we first performed next generation sequencing (NGS) with six pairs of SCLC tumors and adjacent non-cancerous tissues obtained from SCLC patients. Overall, 29 lncRNAs, 48 miRNAs, and 510 mRNAs were found to be differentially expressed in SCLC samples (|log2[fold change] |> 1; P < 0.05). Bioinformatics analysis was performed to predict and construct a lncRNA-miRNA-mRNA ceRNA network, which included 9 lncRNAs, 11 miRNAs, and 392 mRNAs. Four up-regulated lncRNAs and related mRNAs in the ceRNA regulatory pathways were selected and validated by quantitative PCR. In addition, we examined the role of the most upregulated lncRNA, TCONS_00020615, in SCLC cells. We found that TCONS_00020615 may regulate SCLC tumorigenesis through the TCONS_00020615-hsa-miR-26b-5p-TPD52 pathway. CONCLUSIONS Our study provided the comprehensive analysis of the expression profiles of lncRNAs, miRNAs, and mRNAs of SCLC tumors and adjacent non-cancerous tissues. We constructed the ceRNA networks which may provide new evidence for the underlying regulatory mechanism of SCLC. We also found that the lncRNA TCONS_00020615 may regulate the carcinogenesis of SCLC.
Collapse
Affiliation(s)
- Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Ying Zhou
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bin Zhang
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhihong Sheng
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Nan Sun
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baiyin Yuan
- College of Life Science and Health, Biomedical Research Institute, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Xiaoyuan Wu
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
9
|
Zhang Y, Zhang J, Wang F, Wang L. Hypoxia-Related lncRNA Prognostic Model of Ovarian Cancer Based on Big Data Analysis. JOURNAL OF ONCOLOGY 2023; 2023:6037121. [PMID: 37064863 PMCID: PMC10104744 DOI: 10.1155/2023/6037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 04/18/2023]
Abstract
Background Hypoxia is regarded as a key factor in promoting the occurrence and development of ovarian cancer. In ovarian cancer, hypoxia promotes cell proliferation, epithelial to mesenchymal transformation, invasion, and metastasis. Long non-coding RNAs (lncRNAs) are extensively involved in the regulation of many cellular mechanisms, i.e., gene expression, cell growth, and cell cycle. Materials and Methods In our study, a hypoxia-related lncRNA prediction model was established by applying LASSO-penalized Cox regression analysis in public databases. Patients with ovarian cancer were divided into two groups based on the median risk score. The survival rate was analyzed in the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets, and the mechanisms were investigated. Results Through the prognostic analysis of DElncRNAs (differentially expressed long non-coding RNAs), a total of 5 lncRNAs were found to be closely associated with OS (overall survival) in ovarian cancer patients. It was evaluated through Kaplan-Meier analysis that low-risk patients can live longer than high-risk patients (TCGA: p = 1.302e - 04; ICGC: 1.501e - 03). The distribution of risk scores and OS status revealed that higher risk score will lead to lower OS. It was evaluated that low-risk group had higher immune score (p = 0.0064) and lower stromal score (p = 0.00023). Conclusion It was concluded that a hypoxia-related lncRNA model can be used to predict the prognosis of ovarian cancer. Our designed model is more accurate in terms of age, grade, and stage when predicting the overall survival of the patients of ovarian cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Jing Zhang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Fei Wang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Le Wang
- Department of Neurology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| |
Collapse
|
10
|
Tan JD, Zhou MF, Yang S, Lin JP. Long noncoding RNA HCP5 promotes osteosarcoma cell proliferation, invasion, and migration via the miR-29b-3p-LOXL2 axis. Kaohsiung J Med Sci 2022; 38:960-970. [PMID: 35899856 DOI: 10.1002/kjm2.12577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022] Open
Abstract
Osteosarcoma (OS) is the second most common primary malignant bone tumors in adolescents that causes cancer-related deaths. Previous studies have confirmed the promoting role of lncRNA HCP5 in the development of OS, but the specific mechanism is still not well understood. MiRNA levels were measured via RT-qPCR and protein expression was detected via western blotting. Cell proliferation was analyzed by CCK-8 assays and colony formations assay were conducted to measure colony formation ability. Dual-luciferase reporter assay was performed to detect the targeting relationship between HCP5 and miR-29b-3p, and between miR-29b-3p and LOXL2. Wound healing assays and Transwell assays were conducted to verify the migration and invasion abilities of OS cells. Correlations between the levels of HCP5 and miR-29b-3p, and between miR-29b-3p and LOXL2 were determined by Pearson correlation coefficient analysis. MiR-29b-3p expression was decreased and HCP5 and LOXL2 levels were increased in OS tissues and cell lines. MiR-29b-3p could directly act on LOXL2 and knockdown of LOXL2 restrained the proliferation, migration, and invasion of OS cells. Moreover, transfection with sh-HCP5-1 and sh-HCP5-2 suppressed the malignant biological behavior of OS cells. HCP5 directly targeted miR-29b-3p, and promoted OS proliferation, migration, and invasion via the miR-29b-3p/LOXL2 axis. The lncRNA HCP5 may upregulate LOXL2 expression by targeting miR-29b-3p, thereby promoting OS proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jin-Dian Tan
- Department of Orthopaedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, China
| | - Mei-Feng Zhou
- Department of Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, China
| | - Song Yang
- Department of Orthopaedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, China
| | - Jian-Ping Lin
- Department of Orthopaedic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, China
| |
Collapse
|
11
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
12
|
Li H, Zheng X, Gao J, Leung KS, Wong MH, Yang S, Liu Y, Dong M, Bai H, Ye X, Cheng L. Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer. Comput Biol Med 2022; 148:105881. [DOI: 10.1016/j.compbiomed.2022.105881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
|
13
|
Hu SP, Ge MX, Gao L, Jiang M, Hu KW. LncRNA HCP5 as a potential therapeutic target and prognostic biomarker for various cancers: a meta‑analysis and bioinformatics analysis. Cancer Cell Int 2021; 21:686. [PMID: 34923990 PMCID: PMC8684676 DOI: 10.1186/s12935-021-02404-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accumulating studies indicated that dysregulated long non-coding RNA human histocompatibility leukocyte antigen (HLA) Complex P5 (HCP5) may functions as an potential prognostic predictor in multiple cancers. This meta-analysis was performed to systematically collect studies and conduct an evidence-based evaluation of the prognostic role of HCP5 in malignancies. METHODS Four databases (PubMed, Web of Science, Embase and Cochrane library) were comprehensively retrieved from their initiation date to November 9, 2021. Hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) were used to assess the associations between the expression level of HCP5 and prognosis or clinical characteristics. Moreover, results were validated by Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the National Genomics Data Center (NGDC). Subsequently, the molecular mechanism of HCP5 was predicted based on MEM and StarBase databases. The study protocol was registered at PROSPERO (ID: CRD42021274208). RESULTS 9 studies, containing 641 patients, were included in this meta-analysis. Our results revealed that HCP5 overexpression was associated with poor overall survival (OS), tumor type, histological differentiation, and lymph node metastasis in most cancers, but was not associated with age, gender and tumor size; down-regulation of HCP5 was associated with worse OS, advanced tumor stage, positive distal metastasis and lymph node metastasis in skin cutaneous melanoma (SKCM). HCP5 was significantly up-regulated in four cancers and down-regulated in SKCM, which was validated by the GEPIA2 cohort. HCP5 expression in various types of cancer was also verified in NGDC. Further functional prediction revealed that HCP5 may participate in some cancer-related pathways. CONCLUSION There is a significantly association between dysregulation of HCP5 and both prognosis and clinicopathological features in various cancers. HCP5 may be functions as a novel potential prognostic biomarker and therapeutic target in multiple human cancers.
Collapse
Affiliation(s)
- Shao-Pu Hu
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Oncology, Dongfang Hospital, Fengtai District, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Beijing, 100078, China
| | - Meng-Xue Ge
- Department of Integrated Management, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Lei Gao
- Department of Oncology, Dongfang Hospital, Fengtai District, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Beijing, 100078, China
| | - Min Jiang
- Department of Oncology, Dongfang Hospital, Fengtai District, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Beijing, 100078, China.
- Department of Integrated Management, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Kai-Wen Hu
- Department of Oncology, Dongfang Hospital, Fengtai District, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Beijing, 100078, China.
| |
Collapse
|
14
|
Zhang K, Liu Z, Wang Z, Zhou Z, Shao X, Hua X, Mao H, Yang H, Ren K, Chen K. Long Non-Coding RNA MDFIC-7 Promotes Chordoma Progression Through Modulating the miR-525-5p/ARF6 Axis. Front Oncol 2021; 11:743718. [PMID: 34621682 PMCID: PMC8491581 DOI: 10.3389/fonc.2021.743718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background Chordoma, an extremely rare malignant tumor, remains difficult to be cured because of its strong local invasiveness and high recurrence rate. Long non-coding RNAs (lncRNAs) have been demonstrated to play multiple roles in various cancers. The purpose of this study was to investigate the modulatory function of lncRNA MDFIC-7 in chordoma and to elucidate its underlying mechanisms. Methods Quantitative real-time polymerase chain reaction was performed to detect the expression of lncRNA MDFIC-7 in tumor tissues and adjacent nontumorous tissues collected from 15 chordoma patients, as well as in chordoma cell lines. Gene silencing and overexpression experiments were carried out by RNA interference and lentiviral transduction. The effect of lncRNA MDFIC-7 on the proliferation of chordoma cells was evaluated by cell counting kit-8 assay, colony formation assay and xenograft tumor experiments. RNA immunoprecipitation and dual luciferase reporter assays were conducted to evaluate the binding between lncRNA MDFIC-7 and miRNA-525-5p and the interaction between miR-525-5p and the 3′ untranslated region of ADP-ribosylation factor 6 (ARF6) mRNA. The glycolytic capacity and mitochondrial function of chordoma cells were measured by the Seahorse Bioscience XF96 Extracellular Flux Analyzer. Results The expression of lncRNA MDFIC-7 was higher in chordoma tumor tissues than in adjacent non-tumor tissues. Downregulation of lncRNA MDFIC-7 reduced colony formation and cell proliferation in chordoma cells and decreased xenograft tumor growth in a nude mouse model. Moreover, lncRNA MDFIC-7 knockdown attenuated the Warburg effect in chordoma cells and xenograft tumors. LncRNA MDFIC-7 knockdown elevated miR-525-5p levels and decreased ARF6 expressions. Overexpression of ARF6 reversed the inhibitory effect of lncRNA MDFIC-7 knockdown on cell proliferation and the Warburg effect in chordoma cells and xenograft tumors. Mechanistically, lncRNA MDFIC-7, as a molecular sponge of miR-525-5p, negatively regulated miR-525-5p expression and promoted the gene expression of ARF6, a miR-525-5p target. Conclusion Our findings demonstrate that lncRNA MDFIC-7 acts as a molecular sponge to competitively bind to miR-525-5p and promote expression of ARF6. The lncRNA MDFIC-7/miR-525-5p/ARF6 axis regulates chordoma progression and the Warburg effect in chordoma, suggesting that lncRNA MDFIC-7 and miR-525-5p could be promising therapeutic targets for the treatment of chordoma.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zixiang Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhidong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Shao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Hua
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiqing Mao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Ren
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, China.,School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Kangwu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Xiao F, Jia H, Wu D, Zhang Z, Li S, Guo J. LINC01234 aggravates cell growth and migration of triple-negative breast cancer by activating the Wnt pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1999-2012. [PMID: 34173712 DOI: 10.1002/tox.23318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Triple-negative breast cancer (TNBC) is a common cancer with increasing incidence and mortality in female. Increasing studies have revealed that long noncoding RNAs (lncRNAs) are novel molecules regulating tumors. Long intergenic non-protein coding RNA 1234 (LINC01234) has been demonstrated to function as an oncogene in several tumors. However, the role of LINC01234 in TNBC remains unelucidated. Herein, RT-qPCR showed that LINC01234 expression was upregulated in both TNBC tissues and cell lines. Functionally, knockdown of LINC01234 suppressed proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) process, and promoted apoptosis in TNBC cells. Xenograft mouse models revealed that LINC01234 downregulation inhibited TNBC tumor growth in vivo. Furthermore, LINC01234 was transcriptionally elevated by Sp1 transcription factor (SP1) in TNBC cells. Mechanistically, LINC01234 interacted with miR-525-5p and miR-525-5p targeted MEIS2. Rescue assays manifested that MEIS2 overexpression rescued the cellular processes inhibited by silenced LINC01234. Moreover, we validated that LINC01234 regulated the activation of the Wnt pathway through modulating MEIS2 in TNBC cells. In conclusion, LINC01234 aggravated TNBC cell growth, migration, invasion and EMT by modulating the miR-525-5p/MEIS2 axis and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Oncology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiru Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianjin Guo
- Department of Endocrinology and Metabolism, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Ye M, Lin Y, Pan S, Wang ZW, Zhu X. Applications of Multi-omics Approaches for Exploring the Molecular Mechanism of Ovarian Carcinogenesis. Front Oncol 2021; 11:745808. [PMID: 34631583 PMCID: PMC8497990 DOI: 10.3389/fonc.2021.745808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer ranks as the fifth most common cause of cancer-related death in females. The molecular mechanisms of ovarian carcinogenesis need to be explored in order to identify effective clinical therapies for ovarian cancer. Recently, multi-omics approaches have been applied to determine the mechanisms of ovarian oncogenesis at genomics (DNA), transcriptomics (RNA), proteomics (proteins), and metabolomics (metabolites) levels. Multi-omics approaches can identify some diagnostic and prognostic biomarkers and therapeutic targets for ovarian cancer, and these molecular signatures are beneficial for clarifying the development and progression of ovarian cancer. Moreover, the discovery of molecular signatures and targeted therapy strategies could noticeably improve the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | - Zhi-wei Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Yao Y, Li X, Cheng L, Wu X, Wu B. Circular RNA FAT atypical cadherin 1 (circFAT1)/microRNA-525-5p/spindle and kinetochore-associated complex subunit 1 (SKA1) axis regulates oxaliplatin resistance in breast cancer by activating the notch and Wnt signaling pathway. Bioengineered 2021; 12:4032-4043. [PMID: 34288822 PMCID: PMC8806415 DOI: 10.1080/21655979.2021.1951929] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence has confirmed the vital roles of circular RNAs (CircRNAs) in the drug resistance of breast cancer (BC). Herein, we intended to study the effect of circular RNA FAT atypical cadherin 1 (circFAT1) on BC oxaliplatin (OX) resistance and find out the potential molecular mechanism in it. In this study, mRNA and protein levels of genes were measured by RT-qPCR and western blotting, respectively. Luciferase reporter assay confirmed the relationship between microRNA-525-5p (miR-525-5p) and circFAT1 or spindle and kinetochore-associated complex subunit 1 (SKA1). CCK-8, transwell, and flow cytometry experiments were utilized to investigate the chemosensitivity, migration, invasion, and apoptosis of BC cells. Gene Set Enrichment Analysis (GSEA) was applied to discover possible pathways related to SKA1. It was uncovered that circFAT1 was overexpressed in OX-resistant BC tissues and cells. Functional experiments showed that circFAT1 depletion reduced the level of chemoresistance-related genes. Moreover, circFAT1 knockdown remarkably facilitated apoptosis and decreased OX (half-maximal inhibitory concentration) IC50 value, migration, and invasion in OX-resistant BC cells. It was identified that miR-525-5p directly targeted circFAT1 and SKA1. Besides, rescue assays exhibited that circFAT1 promoted OX resistance in BC cells via the miR-525-5p/SKA1 regulatory network. Furthermore, GSEA and western blotting identified that SKA1 activated the Notch and Wnt pathway in OX-resistant BC cells. In conclusion, our results demonstrated that circFAT1 conferred OX resistance in BC by regulating the miR-525-5p/SKA1 via the Notch and Wnt pathway, providing a potential therapeutic target for patients with OX-resistant BC.
Collapse
Affiliation(s)
- Ye Yao
- Department of Ultrasonography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaoqin Li
- Department of Ultrasonography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Lihua Cheng
- Department of Ultrasonography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Xiuhua Wu
- Department of Ultrasonography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Bobo Wu
- Department of Ultrasonography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
18
|
Non-Coding RNAs as Biomarkers of Tumor Progression and Metastatic Spread in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13081839. [PMID: 33921525 PMCID: PMC8069230 DOI: 10.3390/cancers13081839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Despite advances in cancer research in recent years, efficient predictive biomarkers of tumor progression and metastatic spread for ovarian cancer are still missing. Therefore, we critically address recent findings in the field of non-coding RNAs (microRNAs and long non-coding RNAs) and DNA methylation in ovarian cancer patients as promising novel biomarkers of ovarian cancer progression. Abstract Ovarian cancer is one of the most common causes of death among gynecological malignancies. Molecular changes occurring in the primary tumor lead to metastatic spread into the peritoneum and the formation of distant metastases. Identification of these changes helps to reveal the nature of metastases development and decipher early biomarkers of prognosis and disease progression. Comparing differences in gene expression profiles between primary tumors and metastases, together with disclosing their epigenetic regulation, provides interesting associations with progression and metastasizing. Regulatory elements from the non-coding RNA families such as microRNAs and long non-coding RNAs seem to participate in these processes and represent potential molecular biomarkers of patient prognosis. Progress in therapy individualization and its proper targeting also rely upon a better understanding of interactions among the above-listed factors. This review aims to summarize currently available findings of microRNAs and long non-coding RNAs linked with tumor progression and metastatic process in ovarian cancer. These biomolecules provide promising tools for monitoring the patient’s response to treatment, and further they serve as potential therapeutic targets of this deadly disease.
Collapse
|
19
|
Zhao J, Song X, Xu T, Yang Q, Liu J, Jiang B, Wu J. Identification of Potential Prognostic Competing Triplets in High-Grade Serous Ovarian Cancer. Front Genet 2021; 11:607722. [PMID: 33519912 PMCID: PMC7839966 DOI: 10.3389/fgene.2020.607722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing lncRNA-associated competing triplets were found to play important roles in cancers. With the accumulation of high-throughput sequencing data in public databases, the size of available tumor samples is becoming larger and larger, which introduces new challenges to identify competing triplets. Here, we developed a novel method, called LncMiM, to detect the lncRNA–miRNA–mRNA competing triplets in ovarian cancer with tumor samples from the TCGA database. In LncMiM, non-linear correlation analysis is used to cover the problem of weak correlations between miRNA–target pairs, which is mainly due to the difference in the magnitude of the expression level. In addition, besides the miRNA, the impact of lncRNA and mRNA on the interactions in triplets is also considered to improve the identification sensitivity of LncMiM without reducing its accuracy. By using LncMiM, a total of 847 lncRNA-associated competing triplets were found. All the competing triplets form a miRNA–lncRNA pair centered regulatory network, in which ZFAS1, SNHG29, GAS5, AC112491.1, and AC099850.4 are the top five lncRNAs with most connections. The results of biological process and KEGG pathway enrichment analysis indicates that the competing triplets are mainly associated with cell division, cell proliferation, cell cycle, oocyte meiosis, oxidative phosphorylation, ribosome, and p53 signaling pathway. Through survival analysis, 107 potential prognostic biomarkers are found in the competing triplets, including FGD5-AS1, HCP5, HMGN4, TACC3, and so on. LncMiM is available at https://github.com/xiaofengsong/LncMiM.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Zhang M, Li P, Mao X, Zhang H. Regulatory mechanism of miR-525-5p in over-invasion of trophoblast. J Obstet Gynaecol Res 2020; 47:679-688. [PMID: 33258220 DOI: 10.1111/jog.14581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/10/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
AIM To investigate the mechanism of miRNA-525-5p (miR-525-5p) in regulating the invasion of trophoblast cells. METHODS The expressions of miR-525-5p and Homeobox D10 (HOXD10) in pre-eclampsia (PE) and normal placentas were detected. Besides the expressions of miR-525-5p and HOXD10, the levels of Vimentin, N-cadherin and E-cadherin in human trophoblast (HTR)-8 cells were also measured after cell transfection. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and Transwell assays assessed the proliferative and invasive capabilities of HTR-8 cells, respectively. Dual-luciferase reporter assay verified the targeting relationship between miR-525-5p and HOXD10. RESULTS MiR-525-5p was lowly expressed and HOXD10 was highly expressed in PE placentas. MiR-525-5p inhibition or HOXD10 overexpression suppressed proliferation, invasion and epithelial-mesenchymal transition (EMT) of HTR-8 cells. MiR-525-5p overexpression or HOXD10 knockdown promoted proliferation, invasion and EMT of HTR-8 cells. HOXD10 was a downstream target of miR-525-5p. Inhibiting HOXD10 reversed the suppressive effects of miR-525-5p inhibition on proliferation, invasion and EMT of HTR-8 cells. CONCLUSION MiR-525-5p mediates the invasion of trophoblast cells by regulating HOXD10, which provides new therapeutic targets for PE treatment.
Collapse
Affiliation(s)
- Min Zhang
- Department of Obstetrics, Tianjin NanKai Hospital, Tianjin, China
| | - Ping Li
- Department of Obstetrics, Tianjin NanKai Hospital, Tianjin, China
| | - Xuemei Mao
- Department of Obstetrics, Tianjin NanKai Hospital, Tianjin, China
| | - Hongyan Zhang
- Department of Gynecology, Nankai District Hospital of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Zou Y, Chen B. Long non-coding RNA HCP5 in cancer. Clin Chim Acta 2020; 512:33-39. [PMID: 33245911 DOI: 10.1016/j.cca.2020.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Cancer remains a major threat to human health worldwide. Long non-coding RNA (lncRNA) comprises a group of single-stranded RNA with lengths longer than 200 bp. LncRNAs are aberrantly expressed and play a variety of roles involving multiple cellular processes in cancer. Histocompatibility leukocyte antigen complex P5 (HCP5), initially reported in 1993, is an important lncRNA located between the MICA and MICB genes in MHC I region. HCP5 is involved many autoimmune diseases as well as malignancies. Abnormal HCP5 expression occurs in many types of cancer and its dysregulation appears closely associated with tumor progression. HCP5 is also involved in anti-tumor drug resistance as well. As such, HCP5 represents a promising biomarker and therapeutic target in cancer. In this review, we summarize recent researches and provide an overview of the role and mechanism of HCP5 in human cancer.
Collapse
Affiliation(s)
- Yuanzhang Zou
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
22
|
Xu Y, Huang X, Ye W, Zhang Y, Li C, Bai P, Lin Z, Chen C. Comprehensive analysis of key genes associated with ceRNA networks in nasopharyngeal carcinoma based on bioinformatics analysis. Cancer Cell Int 2020; 20:408. [PMID: 32863767 PMCID: PMC7448472 DOI: 10.1186/s12935-020-01507-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with high morbidity rates in the east and southeast Asia. The molecular mechanisms of NPC remain largely unknown. We explored the pathogenesis, potential biomarkers, and prognostic indicators of NPC. METHODS We analyzed mRNAs, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) in the whole transcriptome sequencing dataset of our hospital (five normal tissues vs. five NPC tissues) and six microarray datasets (62 normal tissues vs. 334 NPC tissues) downloaded from the Gene Expression Omnibus (GSE12452, GSE13597, GSE95166, GSE126683, and GSE70970, GSE43039). Differential expression analyses, gene ontology (GO) enrichment, kyoto encyclopedia of genes and genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were conducted. The lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks were constructed using the miRanda and TargetScan database, and a protein-protein interaction (PPI) network of differentially expressed genes (DEGs) was built using Search Tool for the Retrieval of Interacting Genes (STRING) software. Hub genes were identified using Molecular Complex Detection (MCODE), NetworkAnalyzer, and CytoHubba. RESULTS We identified 61 mRNAs, 14miRNAs, and 10 lncRNAs as shared DEGs related to NPC in seven datasets. Changes in NPC were enriched in the chromosomal region, sister chromatid segregation, and nuclear chromosome segregation. GSEA indicated that the mitogen-activated protein kinase (MAPK) pathway, phosphatidylinositol-3 OH kinase/protein kinase B (PI3K-Akt) pathway, apoptotic pathway, and tumor necrosis factor (TNF) were involved in the initiation and development of NPC. Finally, 20 hub genes were screened out via the PPI network. CONCLUSIONS Several DEGs and their biological processes, pathways, and interrelations were found in our current study by bioinformatics analyses. Our findings may offer insights into the biological mechanisms underlying NPC and identify potential therapeutic targets for NPC.
Collapse
Affiliation(s)
- Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Xinyi Huang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
- Fujian Medical University, Fuzhou, Fujian People’s Republic of China
| | - Wangzhong Ye
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
- Fujian Medical University, Fuzhou, Fujian People’s Republic of China
| | - Yangfan Zhang
- Fujian Normal University, Fuzhou, Fujian People’s Republic of China
| | - Changkun Li
- Fujian Normal University, Fuzhou, Fujian People’s Republic of China
| | - Penggang Bai
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Zhizhong Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Chuanben Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, No. 420, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| |
Collapse
|