1
|
Zhang Y, Yan Z, Jiao Y, Feng Y, Zhang S, Yang A. Innate Immunity in Helicobacter pylori Infection and Gastric Oncogenesis. Helicobacter 2025; 30:e70015. [PMID: 40097330 PMCID: PMC11913635 DOI: 10.1111/hel.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Helicobacter pylori is an extremely common cause of gastritis that can lead to gastric adenocarcinoma over time. Approximately half of the world's population is infected with H. pylori, making gastric cancer the fourth leading cause of cancer-related deaths worldwide. Innate immunity significantly contributes to systemic and local immune responses, maintains homeostasis, and serves as the vital link to adaptive immunity, and in doing so, mediates H. pylori infection outcomes and consequent cancer risk and development. The gastric innate immune system, composed of gastric epithelial and myeloid cells, is uniquely challenged by its need to interact simultaneously and precisely with commensal microbiota, exogenous pathogens, ingested substances, and endogenous exfoliated cells. Additionally, innate immunity can be detrimental by promoting chronic infection and fibrosis, creating an environment conducive to tumor development. This review summarizes and discusses the complex role of innate immunity in H. pylori infection and subsequent gastric oncogenesis, and in doing so, provides insights into how these pathways can be exploited to improve prevention and treatment.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Eight‐Year Medical Doctor Program, Peking Union Medical CollegeChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yunlu Feng
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Shengyu Zhang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Liu J, Xiao Y, Xu Q, Xu Y, Guo M, Hu Y, Wang Y, Wang Y. Britannilactone 1-O-acetate induced ubiquitination of NLRP3 inflammasome through TRIM31 as a protective mechanism against reflux esophagitis-induced esophageal injury. Chin Med 2024; 19:118. [PMID: 39215331 PMCID: PMC11363507 DOI: 10.1186/s13020-024-00986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Reflux esophagitis (RE) is a disease in which inflammation of the esophageal mucosa owing to the reflux of gastric contents into the esophagus results in cytokine damage. Britannilactone 1-O-acetate (Brt) has anti-inflammatory effects, significantly inhibiting the activation of the NLRP3 inflammasome, leading to a decrease in inflammatory factors including IL-1 β, IL-6, and TNF-α. However, the mechanism underlying its protective effect against RE-induced esophageal injury remains unclear. In the present study, we investigated the protective mechanism of TRIM31 against NLRP3 ubiquitination-induced RE both in vivo and in vitro. METHODS A model of RE was established in vivo in rats by the method of "4.2 mm pyloric clamp + 2/3 fundoplication". In vitro, the mod was constructed by using HET-1A (esophageal epithelial cells) and exposing the cells to acid, bile salts, and acidic bile salts. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay was used to screen the concentration of administered drugs, and the viability of HET-1A cells in each group. HE staining was used to assess the degree of pathological damage in esophageal tissues. Toluidine blue staining was used to detect whether the protective function of the esophageal epithelial barrier was damaged and restored. The enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of IL-1 β, IL-6, and TNF-α factors in serum. Immunohistochemistry (IHC) was used to detect the expression level of NLRP3 in esophageal tissues. The molecular docking and Co-immunoprecipitation assay (Co-IP assay) were used to detect the TRIM31 interacts with NLRP3. Western blotting detected the Claudin-4, Claudin-5, The G-protein-coupled receptor calcium-sensitive receptor (CaSR), NLRP3, TRIM31, ASC, C-Caspase1, and Caspase1 protein expression levels. RESULTS Brt could alleviate RE inflammatory responses by modulating serum levels of IL-1 β, IL-6, and TNF-α. It also activated the expression of NLRP3, ASC, Caspase 1, and C-Caspase-1 in HET-1A cells. Brt also attenuated TRIM31/NLRP3-induced pathological injury in rats with RE through a molecular mechanism consistent with the in vitro results. CONCLUSIONS Brt promotes the ubiquitination of NLRP3 through TRIM31 and attenuates esophageal epithelial damage induced by RE caused by acidic bile salt exposure. This study provides valuable insights into the mechanism of action of Brt in the treatment of RE and highlights its promising application in the prevention of NLRP3 inflammatory vesicle-associated inflammatory pathological injury.
Collapse
Affiliation(s)
- Ju Liu
- Office of Science and Technology Administration, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yang Xiao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianfei Xu
- Department of Spleen, Stomach and Hepatobiliary, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yunyan Xu
- Preventive Treatment Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Manman Guo
- Pharmaceutical Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yun Hu
- Department of Spleen, Stomach and Hepatobiliary, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yi Wang
- Pharmaceutical Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.
| |
Collapse
|
3
|
Takata T, Masauji T, Motoo Y. Analysis of Crude, Diverse, and Multiple Advanced Glycation End-Product Patterns May Be Important and Beneficial. Metabolites 2023; 14:3. [PMID: 38276293 PMCID: PMC10819149 DOI: 10.3390/metabo14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
Lifestyle-related diseases (LSRDs), such as diabetes mellitus, cardiovascular disease, and nonalcoholic steatohepatitis, are a global crisis. Advanced glycation end-products (AGEs) have been extensively researched because they trigger or promote LSRDs. Recently, techniques such as fluorimetry, immunostaining, Western blotting, slot blotting, enzyme-linked immunosorbent assay, gas chromatography-mass spectrometry, matrix-assisted laser desorption-mass spectrometry (MALDI-MS), and electrospray ionization-mass spectrometry (ESI-MS) have helped prove the existence of intra/extracellular AGEs and revealed novel AGE structures and their modifications against peptide sequences. Therefore, we propose modifications to the existing categorization of AGEs, which was based on the original compounds identified by researchers in the 20th century. In this investigation, we introduce the (i) crude, (ii) diverse, and (iii) multiple AGE patterns. The crude AGE pattern is based on the fact that one type of saccharide or its metabolites or derivatives can generate various AGEs. Diverse and multiple AGE patterns were introduced based on the possibility of combining various AGE structures and proteins and were proven through mass analysis technologies such as MALDI-MS and ESI-MS. Kampo medicines are typically used to treat LSRDs. Because various compounds are contained in Kampo medicines and metabolized to exert effects on various organs or tissues, they may be suitable against various AGEs.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanakacho 918-8503, Fukui, Japan
| |
Collapse
|
4
|
Takata T, Motoo Y. Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation End-Products in Oral, Esophageal, and Gastric Epithelial Cells. Metabolites 2023; 13:878. [PMID: 37512585 PMCID: PMC10385496 DOI: 10.3390/metabo13070878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Kampo medicines are Japanese traditional medicines developed from Chinese traditional medicines. The action mechanisms of the numerous known compounds have been studied for approximately 100 years; however, many remain unclear. While components are normally affected through digestion, absorption, and metabolism, in vitro oral, esophageal, and gastric epithelial cell models avoid these influences and, thus, represent superior assay systems for Kampo medicines. We focused on two areas of the strong performance of this assay system: intracellular and extracellular advanced glycation end-products (AGEs). AGEs are generated from glucose, fructose, and their metabolites, and promote lifestyle-related diseases such as diabetes and cancer. While current technology cannot analyze whole intracellular AGEs in cells in some organs, some AGEs can be generated for 1-2 days, and the turnover time of oral and gastric epithelial cells is 7-14 days. Therefore, we hypothesized that we could detect these rapidly generated intracellular AGEs in such cells. Extracellular AEGs (e.g., dietary or in the saliva) bind to the receptor for AGEs (RAGE) and the toll-like receptor 4 (TLR4) on the surface of the epithelial cells and can induce cytotoxicity such as inflammation. The analysis of Kampo medicine effects against intra/extracellular AGEs in vitro is a novel model.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Yoshiharu Motoo
- Department of Medical Oncology and Kampo Medicines, Komatsu Sophia Hospital, Komatsu 923-0861, Ishikawa, Japan
| |
Collapse
|
5
|
Li X, Zhao C, Li C, Zhang M, Xie Y, Feng F, Yao W, Wang N. Detection and analysis of lung microbiota in mice with lung cancer lacking the NLRP3 gene. Biochem Biophys Res Commun 2023; 639:117-125. [PMID: 36481355 DOI: 10.1016/j.bbrc.2022.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
To explore whether the lung microbiota have changed in the process of NLRP3 inflammasome promoting cancer, we constructed a murine lung cancer model using tracheal instillation of benzo(a)pyrene and an equal volume of tricaprylin, and characterized lung microbiota in bronchoalveolar lavage fluid from 24 SPF wild-type and NLRP3 gene knockout (NLRP3-/-) C57BL/6 mice. 16SrDNA sequencing was used to analyze the changes in the microbiota. The wild-type and the NLRP3-/- lung cancer group had statistically significant differences in tumor formation rate, tumor number, and tumor size. At the phylum and the genus level, the relative abundance of Proteobacteria and Sphingomonas were the highest in each group respectively. Simpson (P = 0.002) and Shannon (P = 0.008) indexes showed that the diversity of microbiota in the lung cancer group was lower than that in the control group under the NLRP3-/- background. According to the ANOSIM and MRPP analysis, there was a difference between the NLRP3-/- lung cancer group and the NLRP3-/- control group (P < 0.05). The knockout of the NLRP3 gene caused changes in the lung microbiota of mice. There may be a regulatory relationship between the NLRP3 inflammasome and the lung microbiota, which affects the occurrence and development of lung cancer.
Collapse
Affiliation(s)
- Xinyan Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Congcong Zhao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao Li
- President's Office, Shandong Cancer Hospital, Jinan, 250117, China
| | - Mengmeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanchen Xie
- Henan Red Cross Blood Center, Zhengzhou, 450053, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wu Yao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Na Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Yu Q, Shi H, Ding Z, Wang Z, Yao H, Lin R. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation in Helicobacter pylori-associated gastritis by regulating ROS and autophagy. Cell Commun Signal 2023; 21:1. [PMID: 36597090 PMCID: PMC9809066 DOI: 10.1186/s12964-022-00954-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/06/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The NLRP3 inflammasome activation is the molecular basis of Helicobacter pylori (Hp)-associated gastritis. Tripartite motif (TRIM) 31 is involved in diverse pathological events. However, whether TRIM31 plays a role in the activation of NLRP3 inflammasome in Hp infection is not clarified. METHODS A mouse model of chronic Hp infection was established, and the gastric tissues were subjected to the polymerase chain reaction, western blotting, histopathological analysis, and RNA sequencing. The mitochondrial membrane potential and ROS in the human gastric epithelium GES-1 cells with or without Hp infection were measured by flow cytometry. GES-1 cells with or without TRIM31 knockdown were transfected with mCherry-EGFP-LC3 adenovirus. After rapamycin and bafilomycin A1 stimulation, autophagy flux in the above primed GES-1 cells was assessed by laser confocal microscope. Lysosomal acidification and expression levels of cathepsin B and cathepsin D in GES-1 cells with Hp infection were measured. RESULTS NLRP3 inflammasome was activated in the gastric tissues of mice with chronic Hp infection in vivo and the GES-1 cells with Hp infection in vitro. TRIM31 was downregulated in Hp infection. TRIM31 negatively regulated the NLRP3 inflammasome activation. Enhanced ROS, impaired autophagy flux, and decreased expression of lysosomal cathepsin B and cathepsin D were observed in TRIM31-deficient GES-1 cells with Hp infection. In turn, inhibition of ROS led to the decreased expression of NLRP3 inflammasome. CONCLUSIONS Together, our data identified that TRIM31 negatively regulated the activation of NLRP3 inflammasome in Hp-associated gastritis by affecting ROS and autophagy of gastric epithelial cells. Video abstract.
Collapse
Affiliation(s)
- Qiao Yu
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Huiying Shi
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhen Ding
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhe Wang
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Hailing Yao
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rong Lin
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
7
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|
8
|
Leishmania tarentolae as an Antigen Delivery Platform: Dendritic Cell Maturation after Infection with a Clone Engineered to Express the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2022; 10:vaccines10050803. [PMID: 35632559 PMCID: PMC9144667 DOI: 10.3390/vaccines10050803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Protozoa of the genus Leishmania are characterized by their capacity to target macrophages and Dendritic Cells (DCs). These microorganisms could thus be exploited for the delivery of antigens to immune cells. Leishmania tarentolae is regarded as a non-pathogenic species; it was previously used as a biofactory for protein production and has been considered as a candidate vaccine or as an antigen delivery platform. However, results on the type of immune polarization determined by L. tarentolae are still inconclusive. Methods: DCs were derived from human monocytes and exposed to live L. tarentolae, using both the non-engineered P10 strain, and the same strain engineered for expression of the spike protein from SARS-CoV-2. We then determined: (i) parasite internalization in the DCs; and (ii) the capacity of the assayed strains to activate DCs and the type of immune polarization. Results: Protozoan parasites from both strains were effectively engulfed by DCs, which displayed a full pattern of maturation, in terms of MHC class II and costimulatory molecule expression. In addition, after parasite infection, a limited release of Th1 cytokines was observed. Conclusions: Our results indicate that L. tarentolae could be used as a vehicle for antigen delivery to DCs and to induce the maturation of these cells. The limited cytokine release suggests L. tarentolae as a neutral vaccine vehicle that could be administered in association with appropriate immune-modulating molecules.
Collapse
|
9
|
Yang J, Kuang H, Li N, Hamdy AM, Song J. The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases. Crit Rev Food Sci Nutr 2022; 63:8768-8780. [PMID: 35400262 DOI: 10.1080/10408398.2022.2062294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic diseases, derived from the dysregulation of immune tolerance mechanisms, have been rising in the last two decades. Recently, increasing evidence has shown that probiotic-derived polysaccharide capsules exhibit a protective effect against allergic diseases, involving regulation of Th1/Th2 balance, induction of differentiation of T regulatory cells and activation of dendritic cells (DCs). DCs have a central role in controlling the immune response through their interaction with gut microbiota via their pattern recognition receptors, including Toll-like receptors and C-type-lectin receptors. This review discusses the effects and critical mechanism of probiotic-derived polysaccharide capsules in regulating the immune system to alleviate allergic diseases. We first describe the development of immune response in allergic diseases and recent relevant findings. Particular emphasis is placed on the effects of probiotic-derived polysaccharide capsules on allergic immune response. Then, we discuss the underlying mechanism of the impact of probiotic-derived polysaccharide capsules on DCs-mediated immune tolerance induction.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Ning Li
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Ahmed Mahmoud Hamdy
- Dairy Science Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Peng ZT, Liu H. Puerarin attenuates LPS-induced inflammatory injury in gastric epithelial cells by repressing NLRP3 inflammasome-mediated apoptosis. Toxicol In Vitro 2022; 81:105350. [PMID: 35331853 DOI: 10.1016/j.tiv.2022.105350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
The NLRP3 inflammasome plays a crucial role in microbially induced gastric epithelial injury, but the underlying mechanisms remain unclear. Here, we aimed to assess the impacts of puerarin on LPS-induced inflammatory damage and the involvement of the AMPK/SIRT1/NLRP3 signaling pathways in this process in GES-1 cells. Cell viability and cytotoxicity were determined using CCK-8 and lactate dehydrogenase assay kits. Apoptosis was measured using annexin staining followed by flow cytometry. Cytokine levels were detected by ELISA, and protein expression was analyzed using western blotting. Protein overexpression was achieved by transfection with relevant pcDNA3.1 vectors, and protein knockdown was achieved by transfection with relevant siRNAs. Puerarin ameliorated LPS-induced cytotoxicity and apoptosis, while repressing LPS-stimulated NLRP3 inflammasome-mediated pyroptosis in GES-1 cells, as evidenced by significantly decreased expression of NLRP3, ASC, cleaved caspase-1, IL-1β and IL-18. NLRP3 knockdown efficiently repressed LPS-induced inflammatory injury in GES-1 cells. Puerarin activated the AMPK/SIRT1 pathway in LPS-treated GES-1 cells, and knockdown of both AMPK and SIRT1 reversed the protective effects of puerarin against LPS-induced inflammatory damage. AMPK overexpression strengthened, while AMPK knockdown weakened, the ability of puerarin to inhibit NLRP3-mediated inflammatory injury in LPS-treated GES-1 cells. Our findings suggest that puerarin may ameliorate LPS-induced inflammatory injury in GES-1 cells by activating the AMPK/SIRT1 signaling pathway and thereby repressing NLRP3 inflammasome-mediated apoptosis.
Collapse
Affiliation(s)
- Zi-Tan Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People's Republic of China; Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventionHubei, Huangshi, Hubei, People's Republic of China
| | - Hui Liu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People's Republic of China; Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventionHubei, Huangshi, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Yang H, Hu B. Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022; 2022:2944156. [PMID: 35300405 PMCID: PMC8923794 DOI: 10.1155/2022/2944156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses, which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the characteristic is, which will immunologically explain H. pylori gastritis.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Chen W, Chen S, Zhao L, Zhang M, Geng H, Dong C, Li R. Effects of real-ambient PM 2.5 exposure plus lipopolysaccharide on multiple organ damage in mice. Hum Exp Toxicol 2022; 41:9603271211061505. [PMID: 35098763 DOI: 10.1177/09603271211061505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The toxicological effects of fine particulate matter (PM2.5) on the cardiopulmonary and nervous systems have been studied widely, whereas the study of PM2.5 on systemic toxicity is not in-depth enough. Lipopolysaccharide (LPS) can cause multiple organ damage. The combined effects of co-exposure of PM2.5 plus LPS on the stomach, spleen, intestine, and kidney are still unclear. Purpose: This study was aimed to explore the toxicological effects of co-exposure of PM2.5 and LPS on the different organs of mice. Research Design and Study Sample Using a real-ambient PM2.5 exposure system and an intraperitoneal LPS injection mouse model, we investigated multiple organ damage effects on male BALB/c mice after co-exposure of PM2.5 plus LPS for 23 weeks in Linfen, a city with a high PM2.5 concentration in China. Data Collection: Eosin-hematoxylin staining, ELISA and the biochemical assay analysed the toxicological effects. Results: The pathological tissue injury on the four organs above appeared in mice co-exposed to PM2.5 plus LPS, accompanied by the body weight and stomach organ coefficient abnormality, and significant elevation of pro-inflammatory cytokines levels, oxidative stress in the spleen and kidney, and levels of kidney injury molecule (KIM-1) increase in the kidney. There were tissue differences in the pathological damage and toxicological effects on mice after co-exposure, in which the spleen and kidney were more sensitive to pollutants. In the PM2.5 + LPS group, the superoxide dismutase inhibition and catalase (CAT) activity promotion in the kidney or spleen of mice were significant relative to the PM2.5 group; the CAT and interleukin-6 (IL-6) levels in the spleen were raised considerably compared with the LPS group. Conclusions: These findings suggested the severity and sensitivity of multiple organ injuries in mice in response to PM2.5 plus LPS.
Collapse
Affiliation(s)
- Wenqi Chen
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Shanshan Chen
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Lifang Zhao
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Mei Zhang
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Hong Geng
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| | - Ruijin Li
- Institute of Environmental Science, 12441Shanxi University, Taiyuan, China
| |
Collapse
|
13
|
Adenovirus-α-defensin complexes induce NLRP3-associated maturation of human phagocytes via TLR4 engagement. J Virol 2022; 96:e0185021. [PMID: 35080426 DOI: 10.1128/jvi.01850-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intramuscular delivery of human adenovirus (HAdV)-based vaccines leads to rapid recruitment of neutrophils, which then release antimicrobial peptides/proteins (AMPs). How these AMPs influence vaccine efficacy over the subsequent 24 h is poorly understood. In this study, we asked if human neutrophil protein 1 (HNP-1), an α-defensin that influences the direct and indirect innate immune responses to a range of pathogens, impacts the response of human phagocytes to three HAdV species/types (HAdV-C5, -D26, -B35). We show that HNP-1 binds to the capsids, redirects HAdV-C5, -D26, -B35 to Toll-like receptor 4 (TLR4), which leads to internalization, an NLRP3-mediated inflammasome response, and IL-1β release. Surprisingly, IL-1β release was not associated with notable disruption of plasma membrane integrity. These data further our understanding of HAdV vaccine immunogenicity and may provide pathways to extend the efficacy. Importance This study examines the interactions between danger-associated molecular patterns and human adenoviruses and its impact on vaccines. HAdVs and HNP-1 can interact, these interactions will modify the response of antigen-presenting cells., which will influence vaccine efficacy.
Collapse
|
14
|
Butler MJ. The role of Western diets and obesity in peripheral immune cell recruitment and inflammation in the central nervous system. Brain Behav Immun Health 2021; 16:100298. [PMID: 34589790 PMCID: PMC8474237 DOI: 10.1016/j.bbih.2021.100298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
As the prevalence of obesity and chronic disease increases, the role of nutrition is taking center stage as a potential root cause of not just metabolic-related illnesses, but also of disorders of the central nervous system (CNS). Consumption of a modern, westernized diet, such as a high fat diet (HFD) that contains excess saturated fatty acids (SFAs), refined carbohydrates, and ultra-processed ingredients has been shown to induce neuroinflammation in multiple brain regions important for energy homeostasis, cognitive function, and mood regulation in rodents, non-human primates, and humans. This review article summarizes the literature showing Western diets, via SFA increases, can increase the reactivity and alter the function of multiple types of immune cells from both the innate and adaptive branches of the immune system, with a specific focus on microglia, macrophages, dendritic cells, and T-cells. These changes in immune and neuroimmune signaling have important implications for neuroinflammation and brain health and will be an important factor in future psychoneuroimmunology research.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University, Wexner Medical Center 460 Medical Center Drive, Columbus, OH, 43210, USA
| |
Collapse
|
15
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
16
|
Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines (Basel) 2021; 9:vaccines9030222. [PMID: 33807582 PMCID: PMC8001307 DOI: 10.3390/vaccines9030222] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in combating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combinations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies.
Collapse
|