1
|
Wang G, Liu Z. Gout is associated with the development of abdominal aortic aneurysm. J Cardiol 2025:S0914-5087(25)00019-X. [PMID: 39921052 DOI: 10.1016/j.jjcc.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Affiliation(s)
- Gang Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichun Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Yin H, Li X, Lu D, Zhao X, Yang Z, Wang Z, Xu F, Chen Y, Li C. Myofibrillogenesis Regulator-1 in Smooth Muscle Cells Modulates Inflammation Signaling Pathways via Regulating ROCK1 Ubiquitination and Degradation to Impact Aortic Dissection. J Inflamm Res 2025; 18:1719-1738. [PMID: 39931165 PMCID: PMC11808051 DOI: 10.2147/jir.s485163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/29/2024] [Indexed: 02/13/2025] Open
Abstract
Background Aortic dissection (AD) is a life-threatening cardiovascular emergency and currently lacks effective drug treatment. Inflammation is a critical mechanism in the development of AD, and identifying specific molecular targets to regulate inflammation is crucial for stopping its progression. This study aimed to investigate the role of MR-1 and ROCK1 in the regulation of inflammation in AD and their potentialities as therapeutic targets. Methods Researchers performed protein immunoblotting on aortic wall tissue from 10 patients who underwent aortic arch replacement and 10 patients who underwent coronary artery bypass grafting to examine the expression levels of MR-1, ROCK1, and inflammatory pathways in the aortas. In vitro experiments, human aortic smooth muscle cells were extracted, and an in vitro dissection model was constructed with angiotensin II. siRNA silencing studies were performed to investigate the effects of MR-1 and ROCK1 on the development of AD and their interconnections. Results Analysis of aortic tissues revealed significantly elevated levels of MR-1 and ROCK1 in AD patients, and meanwhile the inflammatory indexes showed the same trend. Furthermore, it was observed that overexpression of MR-1 and ROCK1 facilitated smooth muscle cell phenotypic transformation and augmented matrix metalloproteinase release in in vitro settings through inflammatory pathway activation. The relationship between MR-1 and ROCK1 was elucidated, too. Conclusion MR-1 and ROCK1 overexpression is associated with the occurrence and development of AD through inflammation. This study highlights the role of inflammation in AD development and tap the potentiality of using MR-1 and ROCK1 as targets to alleviate AD development.
Collapse
Affiliation(s)
- Hang Yin
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xiaoxing Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Dazhou Lu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xin Zhao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Zeyu Yang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Zerui Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Chuanbao Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Shandong Key Laboratory: Magnetic Field-Free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
3
|
Wang Y, Panicker IS, Anesi J, Sargisson O, Atchison B, Habenicht AJR. Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm. Int J Mol Sci 2024; 25:901. [PMID: 38255976 PMCID: PMC10815651 DOI: 10.3390/ijms25020901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFβ) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Owen Sargisson
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Benjamin Atchison
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany;
| |
Collapse
|
4
|
Zhang X, Yang Z, Li X, Liu X, Wang X, Qiu T, Wang Y, Li T, Li Q. Bioinformatics Analysis Reveals Cell Cycle-Related Gene Upregulation in Ascending Aortic Tissues From Murine Models. Front Genet 2022; 13:823769. [PMID: 35356426 PMCID: PMC8959095 DOI: 10.3389/fgene.2022.823769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a high-risk aortic disease. Mouse models are usually used to explore the pathological progression of TAAD. In our studies, we performed bioinformatics analysis on a microarray dataset (GSE36778) and verified experiments to define the integrated hub genes of TAAD in three different mouse models. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analyses, and histological and quantitative reverse transcription-PCR (qRT-PCR) experiments were used in our study. First, differentially expressed genes (DEGs) were identified, and twelve common differentially expressed genes were found. Second, genes related to the cell cycle and inflammation were enriched by using GO and PPI. We focused on filtering and validating eighteen hub genes that were upregulated. Then, expression data from human ascending aortic tissues in the GSE153434 dataset were also used to verify our findings. These results indicated that cell cycle-related genes participate in the pathological mechanism of TAAD and provide new insight into the molecular mechanisms of TAAD.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Xuxia Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Xipeng Wang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China
| | - Tao Qiu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yueli Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tongxun Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qingle Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
5
|
Wang XP, Li QL, Li W, Zhang T, Li XY, Jiao Y, Zhang XM, Jiang JJ, Zhang X, Zhang XM. Dexamethasone attenuated thoracic aortic aneurysm and dissection in vascular smooth muscle cell Tgfbr2 disrupted mice with CCL8 suppression. Exp Physiol 2022; 107:631-645. [PMID: 35344629 DOI: 10.1113/ep090190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim of this study was to investigate the relationship of CCL8 and the thoracic aortic aneurysm and dissection (TAAD) formation in postnatal mice with vascular smooth muscle cell (VSMC) Tgfbr2 disruption and whether dexamethasone could be a potential treatment. What is the main finding and its importance? CCL8 was associated with the formation of TAAD in VSMC Tgfbr2 disrupted mice. Dexamethasone reduced TAAD formation and inhibited MAPK (p-p38) and NF-κB (p-p65) signaling pathways. CCL8 might be an important promoter in aortic inflammation. DEX provided potential therapeutic effects in TAAD treatment. ABSTRACT Aortic inflammation plays a vital role in initiation and progression of thoracic aortic aneurysm and dissection (TAAD). The disturbance of transforming growth factor-β (TGF-β) signaling pathway is believed to be one of the pathogenic mechanisms of TAAD. Initially, Myh11-CreERT2 .Tgfbr2f/f male mice were used to build TAAD mice model. And bioinformatics analyses revealed the enriched inflammatory signal pathways and upregulated chemokine CCL8. So we hypothesized that vascular smooth muscle cell (VSMC) Tgfbr2 disruption in postnatal mice resulted in aortic inflammation associated with CCL8 secretion. Then real-time quantitative PCR and serum ELISA results confirmed that CCL8 expression began to increase after VSMC Tgfbr2 disruption. Next, we cultured mouse thoracic aortas ex vivo, and observed that the protein expressions of CCL8 in culture supernatants were increased by ELISA. Subsequently, the co-localization of CCL8 with α-smooth muscle actin (α-SMA) orCD68 was found significantly increased by immunofluorescence. Then, dexamethasone (DEX) was used to treat TAAD in VSMC Tgfbr2 disrupted mice The results of histochemical, immunofluorescence and immunohistochemical staining indicated that DEX therapy reduced CCL8 secretion, inflammatory cell recruitment, aortic medial thickening, elastic fiber fragmentating, extracellular matrix degradation, contractile apparatus impairment, thereby ameliorated TAAD formation. Western blot showed that MAPK and NF-κB signaling pathways in aorta were overactivated after VSMC Tgfbr2 disruption, but inhibited by DEX therapy. Altogether, CCL8 might be an important promoter in TAAD formation of VSMC Tgfbr2 disrupted mice. And DEX provided potential therapeutic effects in TAAD treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xi-Peng Wang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qing-Le Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Wei Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Tao Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiao-Yan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Yang Jiao
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xue-Min Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Jing-Jun Jiang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiaoping Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, People's Republic of China
| | - Xiao-Ming Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
6
|
Sawada H, Beckner ZA, Ito S, Daugherty A, Lu HS. β-Aminopropionitrile-induced aortic aneurysm and dissection in mice. JVS Vasc Sci 2022; 3:64-72. [PMID: 35141570 PMCID: PMC8814647 DOI: 10.1016/j.jvssci.2021.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
The mechanistic basis for the formation of aortic aneurysms and dissection needs to be elucidated to facilitate the development of effective medications. β-Aminopropionitrile administration in mice has been used frequently to study the pathologic features and mechanisms of aortic aneurysm and dissection. This mouse model mimics several facets of the pathology of human aortic aneurysms and dissection, although many variables exist in the experimental design and protocols that must be resolved to determine its application to the human disease. In the present brief review, we have introduced the development of this mouse model and provided insights into understanding its pathologic features.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| | - Zachary A. Beckner
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| |
Collapse
|