1
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
2
|
Wang F, Yue J, Zhang M, Sun M, Luo X, Zhang H, Wu Y, Cheng Y, Chen J, Huang N. NPRL2 promotes TRIM16-mediated ubiquitination degradation of Galectin-3 to prevent CD8 +T lymphocyte cuproptosis in glioma. Cell Mol Life Sci 2024; 81:424. [PMID: 39367988 PMCID: PMC11456027 DOI: 10.1007/s00018-024-05454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Our previous study found that tumor suppressor nitrogen permease regulator like-2(NPRL2) is frequently downregulated in glioma, leading to malignant growth. However, NPRL2-mediated crosstalk between tumor cells and immune cells remains unclear. METHODS The regulatory effects of NPRL2 on tripartite motif-containing protein 16(TRIM16) dependent ubiquitination degradation of Galectin-3(Gal-3) were explored. The effects of Gal-3 on copper uptake, immunocompetence and cuproptosis were investigated in CD8+T lymphocytes(CD8+T cells). The ability of NPRL2 to protect CD8+T cells from Gal-3 damage was evaluated. Furthermore, the correlations among NPRL2, TRIM16, Gal-3 and CD8+T cell accumulation were analyzed in glioma clinical specimens. RESULTS NPRL2 increased the TRIM16 expression via inactivation of ERK1/2, which in turn promoted the ubiquitination-mediated degradation of Gal-3 and diminished Gal-3 release from glioma cells. Moreover, Gal-3 accelerated copper uptake and triggered cuproptosis in CD8+T cells, whereas NPRL2 increased CD8+T cell recruitment and prevented impairment of CD8+T cells by Gal-3. Clinical samples revealed that NPRL2 expression was positively associated with TRIM16 expression and negatively correlated with Gal-3, but Gal-3 expression was negatively associated with CD8+T cell accumulation. CONCLUSION Glioma-derived NPRL2/TRIM16/Gal-3 axis participates in the regulation of CD8+T cell cuproptosis, which provides a promising strategy to rescue the immune activity of CD8+T cells and reverse immunosuppression in glioma.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Maoxin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Maoyuan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Yuanyuan Wu
- Department of Health Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China
| | - Jin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing, Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
| |
Collapse
|
3
|
Cui Z, Cong M, Yin S, Li Y, Ye Y, Liu X, Tang J. Role of protein degradation systems in colorectal cancer. Cell Death Discov 2024; 10:141. [PMID: 38485957 PMCID: PMC10940631 DOI: 10.1038/s41420-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/18/2024] Open
Abstract
Protein degradation is essential for maintaining protein homeostasis. The ubiquitin‒proteasome system (UPS) and autophagy-lysosome system are the two primary pathways responsible for protein degradation and directly related to cell survival. In malignant tumors, the UPS plays a critical role in managing the excessive protein load caused by cancer cells hyperproliferation. In this review, we provide a comprehensive overview of the dual roles played by the UPS and autolysosome system in colorectal cancer (CRC), elucidating their impact on the initiation and progression of this disease while also highlighting their compensatory relationship. Simultaneously targeting both protein degradation pathways offers new promise for enhancing treatment efficacy against CRC. Additionally, apoptosis is closely linked to ubiquitination and autophagy, and caspases degrade proteins. A thorough comprehension of the interplay between various protein degradation pathways is highly important for clarifying the mechanism underlying the onset and progression of CRC.
Collapse
Affiliation(s)
- Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, 024000, China
| | - Yuqi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Liu
- Cardiovascular Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, China.
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
4
|
Peng N, Liu J, Hai S, Liu Y, Zhao H, Liu W. Role of Post-Translational Modifications in Colorectal Cancer Metastasis. Cancers (Basel) 2024; 16:652. [PMID: 38339403 PMCID: PMC10854713 DOI: 10.3390/cancers16030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract. CRC metastasis is a multi-step process with various factors involved, including genetic and epigenetic regulations, which turn out to be a serious threat to CRC patients. Post-translational modifications (PTMs) of proteins involve the addition of chemical groups, sugars, or proteins to specific residues, which fine-tunes a protein's stability, localization, or interactions to orchestrate complicated biological processes. An increasing number of recent studies suggest that dysregulation of PTMs, such as phosphorylation, ubiquitination, and glycosylation, play pivotal roles in the CRC metastasis cascade. Here, we summarized recent advances in the role of post-translational modifications in diverse aspects of CRC metastasis and its detailed molecular mechanisms. Moreover, advances in drugs targeting PTMs and their cooperation with other anti-cancer drugs, which might provide novel targets for CRC treatment and improve therapeutic efficacy, were also discussed.
Collapse
Affiliation(s)
- Na Peng
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Shuangshuang Hai
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Yihong Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Haibo Zhao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Weixin Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| |
Collapse
|
5
|
Chen J, Feng H, Wang Y, Bai X, Sheng S, Li H, Huang M, Chu X, Lei Z. The involvement of E3 ubiquitin ligases in the development and progression of colorectal cancer. Cell Death Discov 2023; 9:458. [PMID: 38104139 PMCID: PMC10725464 DOI: 10.1038/s41420-023-01760-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
To date, colorectal cancer (CRC) still has limited therapeutic efficacy and poor prognosis and there is an urgent need for novel targets to improve the outcome of CRC patients. The highly conserved ubiquitination modification mediated by E3 ubiquitin ligases is an important mechanism to regulate the expression and function of tumor promoters or suppressors in CRC. In this review, we provide an overview of E3 ligases in modulating various biological processes in CRC, including proliferation, migration, stemness, metabolism, cell death, differentiation and immune response of CRC cells, emphasizing the pluripotency of E3 ubiquitin ligases. We further focus on the role of E3 ligases in regulating vital cellular signal pathways in CRC, such as Wnt/β-catenin pathway and NF-κB pathway. Additionally, considering the potential of E3 ligases as novel targets in the treatment of CRC, we discuss what aspects of E3 ligases can be utilized and exploited for efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Zhang Z, Ye B, Lin Y, Liu W, Deng J, Ji W. LncRNA OTUD6B-AS1 overexpression promoted GPX4-mediated ferroptosis to suppress radioresistance in colorectal cancer. Clin Transl Oncol 2023; 25:3217-3229. [PMID: 37184781 DOI: 10.1007/s12094-023-03193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Radiotherapy is widely employed in colorectal cancer (CRC) treatment but is often compromised by developed radioresistance. This study explored the mechanism of long non-coding RNA ovarian tumor domain containing 6B-antisense RNA1 (lncRNA OTUD6B-AS1) in CRC radioresistance through tripartite motif 16 (TRIM16). METHODS CRC and non-cancerous tissues were collected and radioresistant CRC cells were established, with real-time quantitative polymerase chain reaction to determine gene expression in tissues and cells. Radioresistance was evaluated by cell counting kit-8 assay and immunofluorescence (γ-H2AX) and ferroptosis was tested by Western blot assay (ACSL4/GPX4) and assay kits (Fe2+/ROS/MDA/GSH). The association between ferroptosis and lncRNA OTUD6B-AS1-inhibited radioresistance was testified using ferroptosis inhibitor. The subcellular localization of lncRNA OTUD6B-AS1 was tested by the nuclear/cytoplasmic fractionation assay, with RNA immunoprecipitation assay to validate gene interactions. Rescue experiments were conducted to analyze the role of TRIM16 in CRC radioresistance. RESULTS LncRNA OTUD6B-AS1 and TRIM16 were poorly expressed (P < 0.01) in CRC tissues and cells and further decreased (P < 0.01) in radioresistant CRC cells. OTUD6B-AS1 overexpression decreased cell survival (P < 0.01), increased γ-H2AX levels (P < 0.01), and elevated ferroptosis and oxidative stress (P < 0.01) after X-ray radiation. Ferroptosis inhibitor attenuated radioresistance (P < 0.01) caused by lncRNA OTUD6B-AS1 overexpression. LncRNA OTUD6B-AS1 stabilized TRIM16 mRNA via binding to HuR. TRIM16 knockdown reduced ferroptosis and increased radioresistance (P < 0.05). CONCLUSION OTUD6B-AS1 overexpression stabilized TRIM16 via binding to HuR and increased GPX4-mediated ferroptosis, thus attenuating CRC radioresistance. Our study provided a new rationale for the treatment of CRC.
Collapse
Affiliation(s)
- Zilang Zhang
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China
| | - Baolong Ye
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yiban Lin
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China
| | - Wenjun Liu
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jianzhong Deng
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China.
| | - Wu Ji
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
8
|
Reddy CS, Natarajan P, Nimmakayala P, Hankins GR, Reddy UK. From Fruit Waste to Medical Insight: The Comprehensive Role of Watermelon Rind Extract on Renal Adenocarcinoma Cellular and Transcriptomic Dynamics. Int J Mol Sci 2023; 24:15615. [PMID: 37958599 PMCID: PMC10647773 DOI: 10.3390/ijms242115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.
Collapse
Affiliation(s)
| | | | | | - Gerald R. Hankins
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (C.S.R.); (P.N.); (P.N.)
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (C.S.R.); (P.N.); (P.N.)
| |
Collapse
|
9
|
Roshanazadeh MR, Adelipour M, Sanaei A, Chenane H, Rashidi M. TRIM3 and TRIM16 as potential tumor suppressors in breast cancer patients. BMC Res Notes 2022; 15:312. [PMID: 36180926 PMCID: PMC9523982 DOI: 10.1186/s13104-022-06193-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Breast cancer is the leading cause of death among women in many countries. Numerous factors serve as oncogenes or tumor suppressors in breast cancer. The large family of Tripartite-motif (TRIM) proteins with ~ 80 members has drawn attention for their role in cancer. TRIM3 and TRIM16 have shown suppressive activity in different cancers. This study aimed to evaluate the expression of TRIM3 and TRIM16 in cancerous and normal breast samples and to investigate their association with different clinical and pathological parameters. Results qRT-PCR was utilized to determine the gene expression of TRIM3 and TRIM16. The expression of TRIM3 and TRIM16 genes in tumor samples were significantly reduced to 0.45 and 0.29 fold, respectively. TRIM3 and TRIM16 genes expression were both positively correlated with the invasion of breast cancer. TRIM3 gene expression was associated with tumors’ histological grade. However, no significant association was found between the expression of the genes and tumor size, stage and necrosis. The expression of TRIM3 and TRIM16 are significantly reduced in breast cancer tissues. Besides, the expression of both TRIM3 and TRIM16 genes significantly plummet in lymphatic/vascular and perineural invasive samples. Hence, we suggest a potential tumor suppressor role for TRIM3 and TRIM16 in breast cancer.
Collapse
Affiliation(s)
- Mohammad Reza Roshanazadeh
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of clinical biochemistry, Faculty of medicine, jundishapour University of medical sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of clinical biochemistry, Faculty of medicine, jundishapour University of medical sciences, Ahvaz, Iran
| | - Arash Sanaei
- Department of clinical biochemistry, Faculty of medicine, jundishapour University of medical sciences, Ahvaz, Iran
| | - Hadi Chenane
- Department of clinical biochemistry, Faculty of medicine, jundishapour University of medical sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of clinical biochemistry, Faculty of medicine, jundishapour University of medical sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Xie T, Tan M, Gao Y, Yang H. CRABP2 accelerates epithelial mesenchymal transition in serous ovarian cancer cells by promoting TRIM16 methylation via upregulating EZH2 expression. ENVIRONMENTAL TOXICOLOGY 2022; 37:1957-1967. [PMID: 35442568 DOI: 10.1002/tox.23542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 05/28/2023]
Abstract
Recently, it was covered that cellular retinoic acid-binding protein 2 (CRABP2) is upregulated in ovarian cancer and participates in tumor progression, however, the specific mechanism remains to be explored. The pcDNA-CRABP2 or si-CRABP2 was transfected into SKOV3 and OVCAR3 ovarian cancer cells, respectively, and we observed that overexpression of CRABP2 inhibited cell apoptosis, promoted cell invasion and expression of epithelial mesenchymal transition (EMT) marker proteins, and transfection of si-CRABP2 had the opposite effect. Furthermore, we predicted that EZH2 interacted with CRABP2, and overexpression of CRABP2 promoted EZH2 expression, knockdown of CRABP2 inhibited EZH2 expression, and co-immunoprecipitation assay confirmed their binding relationship. The SKOV3 and OVCAR3 cells were then incubated with pcDNA-CRABP2 alone together with si-EZH2, and we found that si-EZH2 reversed the effect of pcDNA-CRABP2 on promotion of EZH2 expression, cell invasion and EMT maker protein levels. Next, we found that EZH2 could bind to DNMT1, and overexpression of EZH2 inhibited TRIM16 expression and knockdown of EZH2 promoted TRIM16 expression. Moreover, the promoter of TRIM16 contains the CpG island, and ChIP assay observed enriched DNMT1 on the promoter of TRIM16, and overexpression of EZH2 increased the promoter methylation level of TRIM16 and knockdown of EZH2 suppressed the methylation. The SKOV3 cells were incubated with si-EZH2 alone or combined with si-TRIM16, and we found that si-TRIM16 reversed the effect of si-EZH2. In vivo studies showed that knockdown of CRABP2 inhibited tumor volume and weight, suppressed the expression of EZH2 and EMT related proteins vimentin and snail, and increased the expression of TRIM16 and E-cadherin.
Collapse
Affiliation(s)
- Tingting Xie
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Minghua Tan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|