1
|
Li N, Wei X, Dai J, Yang J, Xiong S. METTL3: a multifunctional regulator in diseases. Mol Cell Biochem 2025; 480:3429-3454. [PMID: 39853661 DOI: 10.1007/s11010-025-05208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known m6A methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of m6A modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification. In this review, we discuss the regulatory functions of METTL3 in various diseases, including metabolic diseases, cardiovascular diseases, and cancer. We focus mainly on recent progress in identifying the downstream target genes of METTL3 and its underlying molecular mechanisms and regulators in the above systems. Studies have revealed that the use of METTL3 as a therapeutic target and a new diagnostic biomarker has broad prospects. We hope that this review can serve as a reference for further studies.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Dai
- Department of Critical Care Medicine, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Yang
- Department of Medical Affairs, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Liu R, Su X, Yang L, Xiao D. METTL3-mediated m⁶A methylation in cardiac diseases: pathogenic roles and therapeutic potential. Cell Biol Toxicol 2025; 41:87. [PMID: 40394351 DOI: 10.1007/s10565-025-10039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Cardiac dysfunction is a leading cause of death each year, putting heavy burdens on the global healthcare system. To improve our understanding of cardiac disease, novel perspectives for exploring their pathogenesis mechanisms are needed, which contributes to finding novel diagnoses and therapy targets for cardiac disease. To be noteworthy, researchers have paid great attention to understanding the pathogenesis of cardiac diseases from the perspective of methyltransferase-like 3 (METTL3, the catalytic core)-mediated RNA N6-methyladenosine modification and targeting METTL3 for therapy. Therefore, we aim to evaluate the significance of METTL3 in cardiac diseases. In the present review, we summarize and analyze all studies reporting the involvement of METTL3 in cardiac diseases (acute myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, and cardiac fibrosis) to interpret their interrelationship. This review suggests that METTL3 is a risk gene for cardiac diseases, which shows great promise as a disease diagnosis and prognosis biomarker and is poised to serve as an important target in drug development. Collectively, this review presents a comprehensive, cutting-edge overview of METTL3 in cardiac diseases, which could be a valuable reference for researchers to understand disease pathogenesis and develop novel drugs.
Collapse
Affiliation(s)
- Ruida Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- West China, School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Emergency/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Yang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Emergency/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dongqiong Xiao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Emergency/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Chengdu Hi-Tech Zong Hospital for Women and Children, Chengdu, China.
| |
Collapse
|
3
|
Qin C, Qin Y, Zhou S. Methylations in dilated cardiomyopathy and heart failure. Front Cardiovasc Med 2025; 12:1559550. [PMID: 40290189 PMCID: PMC12021892 DOI: 10.3389/fcvm.2025.1559550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by impaired expansion or contraction of the left or both ventricles in the absence of abnormal load conditions (such as primary valve disease) or severe coronary artery disease that can lead to ventricular remodeling. Genetic mutations, infections, inflammation, autoimmune diseases, exposure to toxins, and endocrine or neuromuscular factors have all been implicated in the causation of DCM. Cardiomyopathy, particularly DCM, often has genetic underpinnings, with established or suspected genetic origins. Up to 40% of DCM cases involve probable or confirmed genetic variations. The significance of RNA modification in the pathogenesis of hypertension, cardiac hypertrophy, and atherosclerosis is well-established. Of late, RNA methylation has garnered attention for its involvement in DCM. This review examines the biological mechanisms and effects of RNA methylation in DCM and heart failure.
Collapse
Affiliation(s)
- Cong Qin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yansong Qin
- Undergraduate School, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Li D, Ma Q. Ubiquitin-specific protease: an emerging key player in cardiomyopathy. Cell Commun Signal 2025; 23:143. [PMID: 40102846 PMCID: PMC11921692 DOI: 10.1186/s12964-025-02123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Protein quality control (PQC) plays a vital role in maintaining normal heart function, as cardiomyocytes are relatively sensitive to misfolded or damaged proteins, which tend to accumulate under pathological conditions. Ubiquitin-specific protease (USP) is the largest deubiquitinating enzyme family and a key component of the ubiquitin proteasome system (UPS), which is a non-lysosomal protein degradation machinery to mediate PQC in cells. USPs regulate the stability or activity of the target proteins that involve intracellular signaling, transcriptional control of inflammation, antioxidation, and cell growth. Recent studies demonstrate that the USPs can regulate fibrosis, lipid metabolism, glucose homeostasis, hypertrophic response, post-ischemic recovery and cell death such as apoptosis and ferroptosis in cardiomyocytes. Since myocardial cell loss is an important component of cardiomyopathy, therefore, these findings suggest that the UPSs play emerging roles in cardiomyopathy. This review briefly summarizes recent literature on the regulatory roles of USPs in the occurrence and development of cardiomyopathy, giving us new insights into the molecular mechanisms of USPs in different cardiomyopathy and potential preventive strategies for cardiomyopathy.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China.
| |
Collapse
|
5
|
Feng XM, Zhang Y, Chen N, Ma LL, Gong M, Yan YX. The role of m 6A modification in cardiovascular disease: A systematic review and integrative analysis. Int Immunopharmacol 2024; 143:113603. [PMID: 39536485 DOI: 10.1016/j.intimp.2024.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS This study focused on the recent advancements in understanding the association between N6-methyladenosine (m6A) modification and cardiovascular disease (CVD). METHODS The potential mechanisms of m6A related to CVD were summarized by literature review. Associations between m6A levels and CVD were explored across 8 electronic databases: PubMed, Embase, Web of Science, Cochrane Library, Sinomed, Wan Fang, CNKI, and Vip. Standard mean difference (SMD) and 95 % confidence interval (95 % CI) were calculated to assess the total effect in integrated analysis. RESULTS The systematic review summarized previous studies on the association between m6A modification and CVD, highlighting the potential role of m6A in CVD progression. A total of 11 studies were included for integrative analysis. The mean m6A levels were significantly higher in CVD than those in normal controls (SMD = 1.86, 95 % CI: 0.16-3.56, P < 0.01). CONCLUSIONS This systematic review provided new targets for early detection and treatment for CVD. And the integrated analysis showed that increased level of m6A was associated with CVD.
Collapse
Affiliation(s)
- Xu-Man Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ning Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Lin-Lin Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Miao Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
6
|
Jiao K, Cheng J, Wang Q, Hao M. LncRNA UCA1 enhances NRF2 expression through the m 6A pathway to mitigate oxidative stress and ferroptosis in aging cardiomyocytes. J Bioenerg Biomembr 2024; 56:607-617. [PMID: 39538055 DOI: 10.1007/s10863-024-10045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
To explore the regulatory mechanism of lncRNA UCA1 and NRF2 in cardiomyocyte aging. In this study, we explored how lncRNA UCA1 regulates NRF2 and its effect on cardiomyocyte aging. H9c2 cardiomyocytes were cultured and treated with H2O2 to simulate cardiomyocyte aging in vitro. The expression levels of lncRNA UCA1 and NRF2 in cells were detected using qRT-PCR. Cell viability was assessed using the CCK8 assay, and cell aging was detected via Sa-β-gal staining. The levels of oxidative stress markers (SOD, MDA, ROS) and the expressions of ferroptosis-related proteins (ACSL4, TFR1, FTH1, GPX4) were measured. The regulatory mechanism between UCA1 and NRF2 was investigated using RIP-qPCR. Additionally, changes in m6A modification levels and the expression of m6A modification-related proteins in cells after UCA1 overexpression were analyzed by western blot. Our results indicate that H2O2 treatment significantly downregulated the expression of lncRNA UCA1 and NRF2. UCA1 overexpression promoted H9c2 cell proliferation, inhibited cell aging, increased SOD activity and the expression of FTH1 and GPX4 proteins, and decreased MDA and ROS content as well as ACSL4 and TFR1 protein expression. RIP-qPCR verified that UCA1 can promote the expression of NRF2 in cells. Overexpression of UCA1 significantly increased the expression of the demethylase FTO, leading to a reduction in m6A modification levels. Furthermore, there was significant enrichment between FTO and NRF2, and overexpression of FTO improved the expression of NRF2 protein in cells. Taken together, lncRNA UCA1 inhibits oxidative stress and ferroptosis, thereby preventing cardiomyocyte aging. This protective effect is likely mediated by increasing the expression of demethylase FTO and reducing m6A modification, which promotes the expression of NRF2.
Collapse
Affiliation(s)
- Kunli Jiao
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jiahao Cheng
- Department of Geriatrics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, P.R. China
| | - Qi Wang
- Department of Geriatrics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, P.R. China
| | - Mingxiu Hao
- Department of Geriatrics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, P.R. China.
| |
Collapse
|
7
|
Liu L, Yu L, Wang Y, Zhou L, Liu Y, Pan X, Huang J. Unravelling the impact of RNA methylation genetic and epigenetic machinery in the treatment of cardiomyopathy. Pharmacol Res 2024; 207:107305. [PMID: 39002868 DOI: 10.1016/j.phrs.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise 533000, China; Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Linxing Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yubo Wang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Liufang Zhou
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yan Liu
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingshou Pan
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Jianjun Huang
- Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
8
|
Zamperla MG, Illi B, Barbi V, Cencioni C, Santoni D, Gagliardi S, Garofalo M, Zingale GA, Pandino I, Sbardella D, Cipolla L, Sabbioneda S, Farsetti A, Ripamonti C, Fossati G, Steinkühler C, Gaetano C, Atlante S. HDAC6 inhibition disrupts HDAC6-P300 interaction reshaping the cancer chromatin landscape. Clin Epigenetics 2024; 16:109. [PMID: 39155390 PMCID: PMC11331611 DOI: 10.1186/s13148-024-01725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) are crucial regulators of gene expression, DNA synthesis, and cellular processes, making them essential targets in cancer research. HDAC6, specifically, influences protein stability and chromatin dynamics. Despite HDAC6's potential therapeutic value, its exact role in gene regulation and chromatin remodeling needs further clarification. This study examines how HDAC6 inactivation influences lysine acetyltransferase P300 stabilization and subsequent effects on chromatin structure and function in cancer cells. METHODS AND RESULTS We employed the HDAC6 inhibitor ITF3756, siRNA, or CRISPR/Cas9 gene editing to inactivate HDAC6 in different epigenomic backgrounds. Constantly, this inactivation led to significant changes in chromatin accessibility, particularly increased acetylation of histone H3 lysines 9, 14, and 27 (ATAC-seq and H3K27Ac ChIP-seq analysis). Transcriptomics, proteomics, and gene ontology analysis revealed gene changes in cell proliferation, adhesion, migration, and apoptosis. Significantly, HDAC6 inactivation altered P300 ubiquitination, stabilizing P300 and leading to downregulating genes critical for cancer cell survival. CONCLUSIONS Our study highlights the substantial impact of HDAC6 inactivation on the chromatin landscape of cancer cells and suggests a role for P300 in contributing to the anticancer effects. The stabilization of P300 with HDAC6 inhibition proposes a potential shift in therapeutic focus from HDAC6 itself to its interaction with P300. This finding opens new avenues for developing targeted cancer therapies, improving our understanding of epigenetic mechanisms in cancer cells.
Collapse
Affiliation(s)
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Daniele Santoni
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | | | | | | | - Lina Cipolla
- Institute of Molecular Genetics, National Research Council (CNR), 27100, Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics, National Research Council (CNR), 27100, Pavia, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Chiara Ripamonti
- New Drug Incubator Department, Italfarmaco Group, 20092, Cinisello Balsamo, Italy
| | - Gianluca Fossati
- New Drug Incubator Department, Italfarmaco Group, 20092, Cinisello Balsamo, Italy
| | | | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| |
Collapse
|
9
|
Zhan X, Yang Y, Li Q, He F. The role of deubiquitinases in cardiac disease. Expert Rev Mol Med 2024; 26:e3. [PMID: 38525836 PMCID: PMC11062144 DOI: 10.1017/erm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
10
|
Zhang K, Zhuo H, Guo J, Wang W, Dai R. Astaxanthin Alleviates the Process of Cardiac Hypertrophy by Targeting the METTL3/Circ_0078450/MiR-338-3p/GATA4 Pathway. Int Heart J 2024; 65:119-127. [PMID: 38296564 DOI: 10.1536/ihj.23-423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Astaxanthin (ASX) is a natural antioxidant with preventive and therapeutic effects on various human diseases. However, the role of ASX in cardiac hypertrophy and its underlying molecular mechanisms remain unclear.Cardiomyocytes (AC16) were used with angiotensin-II (Ang-II) to mimic the cardiac hypertrophy cell model. The protein levels of hypertrophy genes, GATA4, and methyltransferase-like 3 (METTL3) were determined by western blot analysis. Cell size was assessed using immunofluorescence staining. The expression of circ_0078450, miR-338-3p, and GATA4 were analyzed by quantitative real-time PCR. Also, the interaction between miR-338-3p and circ_0078450 or GATA4 was confirmed by dual-luciferase reporter and RIP assays, and the regulation of METTL3 on circ_0078450 was verified by MeRIP and RIP assays.ASX reduced the hypertrophy gene protein expression and cell size in Ang-II-induced AC16 cells. Circ_0078450 was promoted under Ang-II treatment, and ASX reduced circ_0078450 expression in Ang-II-induced AC16 cells. Circ_0078450 could sponge miR-338-3p to positively regulate GATA4 expression, and GATA4 overexpression overturned the suppressive effect of circ_0078450 knockdown on Ang-II-induced cardiomyocyte hypertrophy. Also, the inhibitory effect of ASX on Ang-II-induced cardiomyocyte hypertrophy could be reversed by circ_0078450 or GATA4 overexpression. In addition, METTL3 mediated the m6A methylation of circ_0078450 to enhance circ_0078450 expression. Moreover, METTL3 knockdown suppressed Ang-II-induced cardiomyocyte hypertrophy by inhibiting circ_0078450 expression.Our data showed that ASX repressed cardiac hypertrophy by regulating the METTL3/circ_0078450/miR-338-3p/GATA4 axis.
Collapse
Affiliation(s)
- Kelian Zhang
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University
| | - Huilin Zhuo
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University
| | - Jingyi Guo
- Department of Ultrasound, Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian Campus)
| | - Wei Wang
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University
| | - Ruozhu Dai
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University
| |
Collapse
|
11
|
Bai Y, Zhao H, Liu H, Wang W, Dong H, Zhao C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother 2023; 166:115409. [PMID: 37659205 DOI: 10.1016/j.biopha.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Homologous recombination (HR) repair of DNA double-strand breaks (DSBs) is critical for maintaining genomic integrity and stability. Defects in HR increase the risk of tumorigenesis. However, many human tumors exhibit enhanced HR repair capabilities, consequently endowing tumor cells with resistance to DNA-damaging chemotherapy and radiotherapy. This review summarizes the role of RNA methylation in HR repair and therapeutic resistance in human tumors. We also analyzed the interactions between RNA methylation and other HR-modulating modifications including histone acetylation, histone deacetylation, ubiquitination, deubiquitination, protein arginine methylation, and gene transcription. This review proposes that targeting RNA methylation is a promising approach to overcoming HR-mediated therapeutic resistance.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Zhao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Hongming Dong
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Niu K, Shi Y, Lv Q, Wang Y, Chen J, Zhang W, Feng K, Zhang Y. Spotlights on ubiquitin-specific protease 12 (USP12) in diseases: from multifaceted roles to pathophysiological mechanisms. J Transl Med 2023; 21:665. [PMID: 37752518 PMCID: PMC10521459 DOI: 10.1186/s12967-023-04540-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future.
Collapse
Affiliation(s)
- Kaiyi Niu
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yanlong Shi
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Qingpeng Lv
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yizhu Wang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Jiping Chen
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Wenning Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Kung Feng
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yewei Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China.
| |
Collapse
|
13
|
Lee SY, Park SY, Lee SH, Kim H, Kwon JH, Yoo JY, Kim K, Park MS, Lee CG, Elias JA, Sohn MH, Shim HS, Yoon HG. The deubiquitinase UCHL3 mediates p300-dependent chemokine signaling in alveolar type II cells to promote pulmonary fibrosis. Exp Mol Med 2023; 55:1795-1805. [PMID: 37524875 PMCID: PMC10474292 DOI: 10.1038/s12276-023-01066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal, fibrotic, interstitial lung disease of unknown cause. Despite extensive studies, the underlying mechanisms of IPF development remain unknown. Here, we found that p300 was upregulated in multiple epithelial cells in lung samples from patients with IPF and mouse models of lung fibrosis. Lung fibrosis was significantly diminished by the alveolar type II (ATII) cell-specific deletion of the p300 gene. Moreover, we found that ubiquitin C-terminal hydrolase L3 (UCHL3)-mediated deubiquitination of p300 led to the transcriptional activation of the chemokines Ccl2, Ccl7, and Ccl12 through the cooperative action of p300 and C/EBPβ, which consequently promoted M2 macrophage polarization. Selective blockade of p300 activity in ATII cells resulted in the reprogramming of M2 macrophages into antifibrotic macrophages. These findings demonstrate a pivotal role for p300 in the development of lung fibrosis and suggest that p300 could serve as a promising target for IPF treatment.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae-Hwan Kwon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, Wonju, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
- Department of Internal Medicine, Hanyang University, Seoul, 04763, Korea
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
14
|
Zhang X, Cai H, Xu H, Dong S, Ma H. Critical roles of m 6A methylation in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1187514. [PMID: 37273867 PMCID: PMC10235536 DOI: 10.3389/fcvm.2023.1187514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) have been established as a major cause of mortality globally. However, the exact pathogenesis remains obscure. N6-methyladenosine (m6A) methylation is the most common epigenetic modification on mRNAs regulated by methyltransferase complexes (writers), demethylase transferases (erasers) and binding proteins (readers). It is now understood that m6A is a major player in physiological and pathological cardiac processes. m6A methylation are potentially involved in many mechanisms, for instance, regulation of calcium homeostasis, endothelial function, different forms of cell death, autophagy, endoplasmic reticulum stress, macrophage response and inflammation. In this review, we will summarize the molecular functions of m6A enzymes. We mainly focus on m6A-associated mechanisms and functions in CVDs, especially in heart failure and ischemia heart disease. We will also discuss the potential application and clinical transformation of m6A modification.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
- The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, China
| | - He Cai
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Su Dong
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Fu D, Luo J, Wu Y, Zhang L, Li L, Chen H, Wen T, Fu Y, Xiong W. Angiotensin II-induced calcium overload affects mitochondrial functions in cardiac hypertrophy by targeting the USP2/MFN2 axis. Mol Cell Endocrinol 2023; 571:111938. [PMID: 37100191 DOI: 10.1016/j.mce.2023.111938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Ubiquitination, a common type of post-translational modification, is known to affect various diseases, including cardiac hypertrophy. Ubiquitin-specific peptidase 2 (USP2) plays a crucial role in regulating cell functions, but its role in cardiac functions remains elusive. The present study aims to investigate the mechanism of USP2 in cardiac hypertrophy. Animal and cell models of cardiac hypertrophy were established using Angiotensin II (Ang II) induction. Our experiments revealed that Ang II induced USP2 downregulation in the in vitro and in vivo models. USP2 overexpression suppressed the degree of cardiac hypertrophy (decreased ANP, BNP, and β-MHC mRNA levels, cell surface area, and ratio of protein/DNA), calcium overload (decreased Ca2+ concentration and t-CaMKⅡ and p-CaMKⅡ, and increased SERCA2), and mitochondrial dysfunction (decreased MDA and ROS and increased MFN1, ATP, MMP, and complex Ⅰ and II) both in vitro and in vivo. Mechanically, USP2 interacted with MFN2 and improved the protein level of MFN2 through deubiquitination. Rescue experiments confirmed that MFN2 downregulation neutralized the protective role of USP2 overexpression in cardiac hypertrophy. Overall, our findings suggested that USP2 overexpression mediated deubiquitination to upregulate MFN2, thus alleviating calcium overload-induced mitochondrial dysfunction and cardiac hypertrophy.
Collapse
Affiliation(s)
- Daoyao Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Jing Luo
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yanze Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Liuping Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Lei Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Hui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yongnan Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
16
|
Chen J, Lin X, He J, Liu D, He L, Zhang M, Luan H, Hu Y, Tao C, Wang Q. Artemisitene suppresses rheumatoid arthritis progression via modulating METTL3-mediated N6-methyladenosine modification of ICAM2 mRNA in fibroblast-like synoviocytes. Clin Transl Med 2022; 12:e1148. [PMID: 36536495 PMCID: PMC9763537 DOI: 10.1002/ctm2.1148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease. We previously revealed that the natural compound artemisitene (ATT) exhibits excellent broad anticancer activities without toxicity on normal tissues. Nevertheless, the effect of ATT on RA is undiscovered. Herein, we aim to study the effect and potential mechanism of ATT on RA management. METHODS A collagen-induced arthritis (CIA) mouse model was employed to confirm the anti-RA potential of ATT. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays, cell cycle and apoptosis analysis, immunofluorescence, migration and invasion assays, quantitative real-time PCR (RT-qPCR), Western blot, RNA-sequencing (RNA-seq) analysis, plasmid construction and lentivirus infection, and methylated RNA immunoprecipitation and chromatin immunoprecipitation assays, were carried out to confirm the effect and potential mechanism of ATT on RA management. RESULTS ATT relieved CIA in mice. ATT inhibited proliferation and induced apoptosis of RA-fibroblast-like synoviocytes (FLSs). ATT restrained RA-FLSs migration and invasion via suppressing epithelial-mesenchymal transition. RNA-sequencing analysis and bioinformatics analysis identified intercellular adhesion molecule 2 (ICAM2) as a promoter of RA progression in RA-FLSs. ATT inhibits RA progression by suppressing ICAM2/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/p300 pathway in RA-FLSs. Moreover, ATT inhibited methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine methylation of ICAM2 mRNA in RA-FLSs. Interestingly, p300 directly facilitated METTL3 transcription, which could be restrained by ATT in RA-FLSs. Importantly, METTL3, ICAM2 and p300 expressions in synovium tissues of RA patients were related to clinical characteristics and therapy response. CONCLUSIONS We provided strong evidence that ATT has therapeutic potential for RA management by suppressing proliferation, migration and invasion, in addition to inducing apoptosis of RA-FLSs through modulating METTL3/ICAM2/PI3K/AKT/p300 feedback loop, supplying the fundamental basis for the clinical application of ATT in RA therapy. Moreover, METTL3, ICAM2 and p300 might serve as biomarkers for the therapy response of RA patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Xian Lin
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Juan He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Dandan Liu
- School of Basic Medical ScienceGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Lianhua He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Miaomiao Zhang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Huijie Luan
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Yiping Hu
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Cheng Tao
- School of PharmacyGuangdong Medical UniversityDongguanGuangdongChina
| | - Qingwen Wang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| |
Collapse
|
17
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
18
|
N6-methyladenosine modulates long non-coding RNA in the developing mouse heart. Cell Death Discov 2022; 8:329. [PMID: 35858921 PMCID: PMC9300643 DOI: 10.1038/s41420-022-01118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were reported to potentially play a regulatory role in the process of myocardial regeneration in the neonatal mouse. N6-methyladenosine (m6A) modification may play a key role in myocardial regeneration in mice and regulates a variety of biological processes through affecting the stability of lncRNAs. However, the map of m6A modification of lncRNAs in mouse cardiac development still remains unknown. We aimed to investigate the differences in the m6A status of lncRNAs during mouse cardiac development and reveal a potential role of m6A modification modulating lncRNAs in cardiac development and myocardial regeneration during cardiac development in mice. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of the heart tissue in C57BL/6 J mice at postnatal day 1 (P1), P7 and P28 were performed to produce stagewise cardiac lncRNA m6A-methylomes in a parallel timeframe with the established loss of an intrinsic cardiac regeneration capacity and early postnatal development. There were significant differences in the distribution and abundance of m6A modifications in lncRNAs in the P7 vs P1 mice. In addition, the functional role of m6A in regulating lncRNA levels was established for selected transcripts with METTL3 silencing in neonatal cardiomyocytes in vitro. Based on our MeRIP-qPCR experiment data, both lncGm15328 and lncRNA Zfp597, that were not previously associated with cardiac regeneration, were found to be the most differently methylated at P1-P7. These two lncRNAs sponged several miRNAs which further regulated multiple mRNAs, including some of which have previously been linked with cardiac regeneration ability. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that differential m6A modifications were more enriched in functions and cellular signalling pathways related to cardiomyocyte proliferation. Our data suggested that the m6A modification on lncRNAs may play an important role in the regeneration of myocardium and cardiac development. The graphical abstract of the potential mechanism of m6A modulates long non-coding RNA in the developing mouse heart.![]()
Collapse
|
19
|
Zhang R, Qu Y, Ji Z, Hao C, Su Y, Yao Y, Zuo W, Chen X, Yang M, Ma G. METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cell Mol Biol Lett 2022; 27:55. [PMID: 35836108 PMCID: PMC9284900 DOI: 10.1186/s11658-022-00349-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background METTL3 is the core catalytic enzyme in m6A and is involved in a variety of cardiovascular diseases. However, whether and how METTL3 plays a role during angiotensin II (Ang-II)-induced myocardial hypertrophy is still unknown. Methods Neonatal rat cardiomyocytes (NRCMs) and C57BL/6J mice were treated with Ang-II to induce myocardial hypertrophy. qRT-PCR and western blots were used to detect the expression of RNAs and proteins. Gene function was verified by knockdown and/or overexpression, respectively. Luciferase and RNA immunoprecipitation (RIP) assays were used to verify interactions among multiple genes. Wheat germ agglutinin (WGA), hematoxylin and eosin (H&E), and immunofluorescence were used to examine myocardial size. m6A methylation was detected by a colorimetric kit. Results METTL3 and miR-221/222 expression and m6A levels were significantly increased in response to Ang-II stimulation. Knockdown of METTL3 or miR-221/222 could completely abolish the ability of NRCMs to undergo hypertrophy. The expression of miR-221/222 was positively regulated by METTL3, and the levels of pri-miR-221/222 that bind to DGCR8 or form m6A methylation were promoted by METTL3 in NRCMs. The effect of METTL3 knockdown on hypertrophy was antagonized by miR-221/222 overexpression. Mechanically, Wnt/β-catenin signaling was activated during hypertrophy and restrained by METTL3 or miR-221/222 inhibition. The Wnt/β-catenin antagonist DKK2 was directly targeted by miR-221/222, and the effect of miR-221/222 inhibitor on Wnt/β-catenin was abolished after inhibition of DKK2. Finally, AAV9-mediated cardiac METTL3 knockdown was able to attenuate Ang-II-induced cardiac hypertrophy in mouse model. Conclusions Our findings suggest that METTL3 positively modulates the pri-miR221/222 maturation process in an m6A-dependent manner and subsequently activates Wnt/β-catenin signaling by inhibiting DKK2, thus promoting Ang-II-induced cardiac hypertrophy. AAV9-mediated cardiac METTL3 knockdown could be a therapeutic for pathological myocardial hypertrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00349-1.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yamin Su
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Hunan road, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Liu C, Gu L, Deng W, Meng Q, Li N, Dai G, Yu S, Fang H. N6-Methyladenosine RNA Methylation in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:887838. [PMID: 35571209 PMCID: PMC9098837 DOI: 10.3389/fcvm.2022.887838] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) modification is the most universal and abundant post-transcriptional modification of eukaryotic RNA and occurs mainly at the consensus motif RR (m6A) CH (R = A or G, H = A, C, or U) in long internal exons, near stop codons, or in the 3' untranslated region (UTR). "Writers," "erasers," and "readers" are responsible for the occurrence, removal, and recognition of m6A modification, respectively. Substantial evidence has shown that m6A RNA modification can exert important functions in physiological and pathological processes. Cardiovascular diseases (CVDs) are a wide array of disorders affecting heart or vessels, including atherosclerosis (AS), hypertension (HT), ischemia/reperfusion (I/R) injury, myocardial infarction (MI), stroke, cardiac hypertrophy, heart failure (HF), and so on. Despite the advances in lipid-lowering drugs, antihypertensives, antiplatelet agents, and anticoagulation therapy, CVDs are still the leading cause of death worldwide. Recent studies have suggested that m6A modification of RNA may contribute to the pathogenesis of CVDs, providing a novel research insight for CVDs. Herein, we provide an up-of-date summarization of the molecular mechanism of m6A and the roles of m6A in different types of CVDs. At last, we propose that m6A might be a potiential biomarker or therapeutic target for CVDs.
Collapse
Affiliation(s)
- Chi Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lei Gu
- Department of Internal Medicine, Shanghai Shende Hospital, Shanghai, China
| | - Wenjuan Deng
- Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qianchao Meng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Li
- Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Guifeng Dai
- Department of Geriatrics Center, National Clinical Research Center for Aging and Medicine, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Suli Yu
- Department of Hand and Upper Extremity Surgery and Limb Function Reconstruction Center, Jing’an District Central Hospital, Shanghai, China
| | - Hong Fang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|