1
|
Li P, Guan D, Li S, Deng J, Zhang H, Liu X, Chen X, Xu Z, Wang H, Ren F. Exosomes derived from myelodysplastic syndromes cells induce IL-1β production from macrophages to promote disease progress. Cytokine 2025; 190:156924. [PMID: 40147377 DOI: 10.1016/j.cyto.2025.156924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Exosomes are extracellular vesicles with a membrane structure that play important roles in intercellular communication, material transport and cellular immunity.Our previous study found that exosomes can affect the biological functions of MDS cell lines, but the mechanism of action has not been elucidated.Macrophages are one of the major innate immune cells that produce a variety of inflammatory cytokines and perform multiple biological functions in the tumor microenvironment (TME).The role of tumor cell-derived exosomes on macrophages and in the progression of MDS is rarely reported,therefore, the aim of our study was to investigate the effect of exosomes on macrophages and the effect of cytokines secreted by macrophages on MDS cells, with a view to exploring the role and mechanisms of exosomes and macrophages in the progression of MDS. METHODS Changes in cytokine content in peripheral blood of MDS patients were detected. The cytokine concentration in the growth environment of MDS cell lines was changed to observe the changes in the biological functions of MDS cell lines.After induction of human monocyte cell line (THP-1) into THP-1-Mφ macrophages with Phorbol 12-myristate 13-acetate (PMA), the macrophages (Mφ) were then co-cultured with MDS cell line exosomes extracted by ultrafiltration with THP-1-Mφ to observe macrophage (Mφ) differentiation.Flow cytometry was used to detect the changes in cytokine content released by macrophages before and after the addition of exosome inhibitors, and the changes in the biological function of MDS cell lines during this process.Gene and protein levels of significantly changed cytokine-related signaling pathways were detected using Q-PCR and WB. RESULTS IL-1β levels were significantly higher in the peripheral blood of MDS patients compared to controls.The exosomes extracted by ultrafiltration can be taken up by macrophages, which can promote the release of IL-1β from THP-1-Mφ cells, and promote the proliferation, apoptosis and migration ability of MDS cell lines.Exosomes stimulate macrophages to produce IL-1β and promote MDS disease progression through the MER/ERK pathway.
Collapse
Affiliation(s)
- Peichun Li
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Dongmei Guan
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Shuo Li
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Ju Deng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - HongYu Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Xiaoli Liu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China
| | - Xiuhua Chen
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, Shanxi Province, China
| | - Zhifang Xu
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, Shanxi Province, China
| | - Hongwei Wang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province, China; Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, Shanxi Province, China; Shanxi University of Chinese Medicine,No. 121, University Street, Yuci District, Jinzhong, City, Shanxi Province, China.
| | - Fanggang Ren
- Laboratory of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China; The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Diseases of Shanxi Province, 382 Wuyi Road, Taiyuan, Shanxi Province, China.
| |
Collapse
|
2
|
Tentori CA, Zhao LP, Tinterri B, Strange KE, Zoldan K, Dimopoulos K, Feng X, Riva E, Lim B, Simoni Y, Murthy V, Hayes MJ, Poloni A, Padron E, Cardoso BA, Cross M, Winter S, Santaolalla A, Patel BA, Groarke EM, Wiseman DH, Jones K, Jamieson L, Manogaran C, Daver N, Gallur L, Ingram W, Ferrell PB, Sockel K, Dulphy N, Chapuis N, Kubasch AS, Olsnes AM, Kulasekararaj A, De Lavellade H, Kern W, Van Hemelrijck M, Bonnet D, Westers TM, Freeman S, Oelschlaegel U, Valcarcel D, Raddi MG, Grønbæk K, Fontenay M, Loghavi S, Santini V, Almeida AM, Irish JM, Sallman DA, Young NS, van de Loosdrecht AA, Adès L, Della Porta MG, Cargo C, Platzbecker U, Kordasti S. Immune-monitoring of myelodysplastic neoplasms: Recommendations from the i4MDS consortium. Hemasphere 2024; 8:e64. [PMID: 38756352 PMCID: PMC11096644 DOI: 10.1002/hem3.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/03/2024] [Indexed: 05/18/2024] Open
Abstract
Advancements in comprehending myelodysplastic neoplasms (MDS) have unfolded significantly in recent years, elucidating a myriad of cellular and molecular underpinnings integral to disease progression. While molecular inclusions into prognostic models have substantively advanced risk stratification, recent revelations have emphasized the pivotal role of immune dysregulation within the bone marrow milieu during MDS evolution. Nonetheless, immunotherapy for MDS has not experienced breakthroughs seen in other malignancies, partly attributable to the absence of an immune classification that could stratify patients toward optimally targeted immunotherapeutic approaches. A pivotal obstacle to establishing "immune classes" among MDS patients is the absence of validated accepted immune panels suitable for routine application in clinical laboratories. In response, we formed International Integrative Innovative Immunology for MDS (i4MDS), a consortium of multidisciplinary experts, and created the following recommendations for standardized methodologies to monitor immune responses in MDS. A central goal of i4MDS is the development of an immune score that could be incorporated into current clinical risk stratification models. This position paper first consolidates current knowledge on MDS immunology. Subsequently, in collaboration with clinical and laboratory specialists, we introduce flow cytometry panels and cytokine assays, meticulously devised for clinical laboratories, aiming to monitor the immune status of MDS patients, evaluating both immune fitness and identifying potential immune "risk factors." By amalgamating this immunological characterization data and molecular data, we aim to enhance patient stratification, identify predictive markers for treatment responsiveness, and accelerate the development of systems immunology tools and innovative immunotherapies.
Collapse
Affiliation(s)
- Cristina A. Tentori
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Comprehensive Cancer Centre, King's CollegeLondonUK
| | - Lin P. Zhao
- Hématologie seniorsHôpital Saint‐Louis, Assistance Publique des Hôpitaux de Paris (APHP)ParisFrance
- INSERM UMR_S1160, Institut de Recherche Saint LouisUniversité Paris CitéParisFrance
| | - Benedetta Tinterri
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | - Kathryn E. Strange
- Comprehensive Cancer Centre, King's CollegeLondonUK
- Research Group of Molecular ImmunologyFrancis Crick InstituteLondonUK
| | - Katharina Zoldan
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Konstantinos Dimopoulos
- Department of Clinical BiochemistryBispebjerg and Frederiksberg HospitalCopenhagenDenmark
- Department of Pathology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Elena Riva
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | | | - Yannick Simoni
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | - Vidhya Murthy
- Centre for Clinical Haematology, University Hospitals of BirminghamBirminghamUK
| | - Madeline J. Hayes
- Cell & Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Antonella Poloni
- Department of Clinical and Molecular SciencesUniversità Politecnica delle MarcheAnconaItaly
| | - Eric Padron
- Moffitt Cancer Center, Malignant Hematology DepartmentTampaUSA
| | - Bruno A. Cardoso
- Universidade Católica PortuguesaFaculdade de MedicinaPortugal
- Universidade Católica Portuguesa, Centro de Investigação Interdisciplinar em SaúdePortugal
| | - Michael Cross
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Susann Winter
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | | | - Bhavisha A. Patel
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Emma M. Groarke
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Daniel H. Wiseman
- Division of Cancer SciencesThe University of ManchesterManchesterUK
- The Christie NHS Foundation TrustManchesterUK
| | - Katy Jones
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Lauren Jamieson
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Charles Manogaran
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Naval Daver
- University of TexasMD Anderson Cancer CenterHouston, TexasUSA
| | - Laura Gallur
- Hematology Department, Vall d'hebron University Hospital, Vall d'hebron Institut of Oncology (VHIO)Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Wendy Ingram
- Department of HaematologyUniversity Hospital of WalesCardiffUK
| | - P. Brent Ferrell
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Katja Sockel
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - Nicolas Dulphy
- INSERM UMR_S1160, Institut de Recherche Saint LouisUniversité Paris CitéParisFrance
- Laboratoire d'Immunologie et d‘Histocompatibilité, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Saint‐LouisParisFrance
- Institut Carnot OPALE, Institut de Recherche Saint‐Louis, Hôpital Saint‐LouisParisFrance
| | - Nicolas Chapuis
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
- Assistance Publique‐Hôpitaux de Paris Centre, Hôpital CochinParisFrance
| | - Anne S. Kubasch
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Astrid M. Olsnes
- Section for Hematology, Department of MedicineHaukeland University HospitalBergenNorway
- Department of Clinical ScienceFaculty of Medicine, University of BergenBergenNorway
| | | | | | | | | | - Dominique Bonnet
- Hematopoietic Stem Cell LaboratoryFrancis Crick InstituteLondonUK
| | - Theresia M. Westers
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, location VU University Medical CenterAmsterdamThe Netherlands
| | - Sylvie Freeman
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Uta Oelschlaegel
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - David Valcarcel
- Hematology Department, Vall d'hebron University Hospital, Vall d'hebron Institut of Oncology (VHIO)Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Marco G. Raddi
- Myelodysplastic Syndrome Unit, Hematology DivisionAzienda Ospedaliero‐Universitaria Careggi, University of FlorenceFlorenceItaly
| | - Kirsten Grønbæk
- Department of Hematology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Michaela Fontenay
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
- Assistance Publique‐Hôpitaux de Paris Centre, Hôpital CochinParisFrance
| | - Sanam Loghavi
- University of TexasMD Anderson Cancer CenterHouston, TexasUSA
| | - Valeria Santini
- Myelodysplastic Syndrome Unit, Hematology DivisionAzienda Ospedaliero‐Universitaria Careggi, University of FlorenceFlorenceItaly
| | - Antonio M. Almeida
- Hematology DepartmentHospital da Luz LisboaLisboaPortugal
- DeaneryFaculdade de Medicina, UCPLisboaPortugal
| | - Jonathan M. Irish
- Cell & Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, location VU University Medical CenterAmsterdamThe Netherlands
| | - Lionel Adès
- Hématologie seniorsHôpital Saint‐Louis, Assistance Publique des Hôpitaux de Paris (APHP)ParisFrance
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | - Matteo G. Della Porta
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | | | - Uwe Platzbecker
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Shahram Kordasti
- Comprehensive Cancer Centre, King's CollegeLondonUK
- Department of Clinical and Molecular SciencesUniversità Politecnica delle MarcheAnconaItaly
- Haematology DepartmentGuy's and St Thomas NHS TrustLondonUK
| | | |
Collapse
|
3
|
Xing T, Yao WL, Zhao HY, Wang J, Zhang YY, Lv M, Xu LP, Zhang XH, Huang XJ, Kong Y. Bone marrow macrophages are involved in the ineffective hematopoiesis of myelodysplastic syndromes. J Cell Physiol 2024; 239:e31129. [PMID: 38192063 DOI: 10.1002/jcp.31129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 01/10/2024]
Abstract
Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders characterized by ineffective hematopoiesis. Accumulating evidence has shown that macrophages (MΦs) are important components in the regulation of tumor progression and hematopoietic stem cells (HSCs). However, the roles of bone marrow (BM) MΦs in regulating normal and malignant hematopoiesis in different clinical stages of MDS are largely unknown. Age-paired patients with lower-risk MDS (N = 15), higher-risk MDS (N = 15), de novo acute myeloid leukemia (AML) (N = 15), and healthy donors (HDs) (N = 15) were enrolled. Flow cytometry analysis showed increased pro-inflammatory monocyte subsets and a decreased classically activated (M1) MΦs/alternatively activated (M2) MΦs ratio in the BM of patients with higher-risk MDS compared to lower-risk MDS. BM MФs from patients with higher-risk MDS and AML showed impaired phagocytosis activity but increased migration compared with lower-risk MDS group. AML BM MΦs showed markedly higher S100A8/A9 levels than lower-risk MDS BM MΦs. More importantly, coculture experiments suggested that the HSC supporting abilities of BM MΦs from patients with higher-risk MDS decreased, whereas the malignant cell supporting abilities increased compared with lower-risk MDS. Gene Ontology enrichment comparing BM MΦs from lower-risk MDS and higher-risk MDS for genes was involved in hematopoiesis- and immunity-related pathways. Our results suggest that BM MΦs are involved in ineffective hematopoiesis in patients with MDS, which indicates that repairing aberrant BM MΦs may represent a promising therapeutic approach for patients with MDS.
Collapse
Affiliation(s)
- Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wei-Li Yao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hong-Yan Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Jing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
4
|
Chen X, Li C, Wang Y, Geng S, Xiao M, Zeng L, Deng C, Li M, Huang X, Weng J, Du X, Lai P. Diagnostic and prognostic value of ferroptosis-related genes in patients with Myelodysplastic neoplasms. Hematology 2023; 28:2288475. [PMID: 38038045 DOI: 10.1080/16078454.2023.2288475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
This study delves into the emerging role of ferroptosis in Myelodysplastic Neoplasms (MDS) and aims to identify a prognostic ferroptosis-related gene signature for MDS. Utilizing RNA-seq data and clinical information from the Gene Expression Omnibus database, the researchers extracted ferroptosis-related genes from the FerrDb website and conducted differential expression analysis using the 'limma' package in R. Hub ferroptosis-related genes in MDS were screened using the "RandomForest" and "carat" R packages. Kaplan -Meier and Cox regression analyses were employed to assess the prognostic role of three identified hub genes (BNIP3, MDM2, and RRM2). Receiver operator characteristic curve analysis confirmed the diagnostic efficacy of these genes. The study delved further into immune infiltration correlations, ncRNA-transcription factor coregulatory network analysis, and the identification of potential therapeutic drugs targeting hub ferroptosis-related genes in MDS. The researchers constructed a 3-gene signature-based risk score using datasets GSE58831 and GSE19429, demonstrating high accuracy (AUC > 0.75) in both datasets for survival prediction in MDS. A nomogram analysis reinforced the prognostic value of the risk-scoring model. Immunological analysis revealed an association between the risk score and immune infiltration. Quantitative reverse transcription polymerase chain reaction (qPCR) data indicated significant expression differences in MDM2, RRM2, and BNIP3 between MDS and healthy bone marrow samples. Notably, MDM2 and RRM2 showed decreased expression, while BNIP3 exhibited increased expression in MDS samples. This comprehensive study concludes that BNIP3, MDM2, and RRM2 hold diagnostic and prognostic significance in MDS and provide valuable insights into immune cell landscapes and potential therapeutic avenues for this condition.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Maozhi Xiao
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chengxin Deng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Minming Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Ou Y, Yang Y, Li X, Zhang X, Zhao L, Yang C, Wu Y. Arginine metabolism key enzymes affect the prognosis of myelodysplastic syndrome by interfering with macrophage polarization. Cancer Med 2023; 12:16444-16454. [PMID: 37366304 PMCID: PMC10469818 DOI: 10.1002/cam4.6287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
INTRODUCTION Immune factors contribute to the onset of myelodysplastic syndrome (MDS). Arginine metabolism affects tumor-associated macrophage (TAM) polarization. This study investigated the infiltration of TAMs and effect of arginine metabolism key enzymes on MDS prognosis. METHODS We used the GEO (Gene Express Omnibus database) dataset "GSE19429" to analyze and compare metabolism-associated pathways between MDS patients with excess blasts and those without. The markers of TAMs and arginine metabolism key enzymes, including CD68, iNOS, ARG1 and ASS1 were included in this study. A cohort of 79 patients with acute myeloid leukemia or MDS extracted from GenomicScape's online data mining platform was used to analyze the prognostic significance of the mRNA levels. Fifty-eight patients with primary MDS admitted to Sichuan University's West China Hospital from 2013 to 2017 were evaluated for protein levels. The coexpression of CD68, iNOS, and ARG1 was investigated using an Opal polychromatic immunofluorescence kit. RESULTS The "Arginine and proline metabolism" pathways (padjusted = 0.01) were associated with excess blasts in patients with MDS. In the mRNA expression cohort, patients with low NOS2 (or iNOS) and high ARG1, ASS1, and CD68 expression levels had worse prognosis. Patients with high CD68 (p = 0.01), high iNOS (p < 0.01), low ARG1 (p = 0.01), and negative ASS1 (p = 0.02) protein expression levels had better prognoses. iNOS and ARG1 were coexpressed with CD68 in MDS patients with or without excess blasts, respectively. CONCLUSIONS Arginine metabolism may contribute to the prognosis of patients with MDS by affecting TAM polarization.
Collapse
Affiliation(s)
- Yang Ou
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Yan Yang
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Xuefeng Li
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Xin Zhang
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Lei Zhao
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Chenlu Yang
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Yu Wu
- Department of Hematology and Hematology Research InstituteWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| |
Collapse
|