1
|
Peng Z, Lv X, Sun H, Zhao L, Huang S. 3D tumor cultures for drug resistance and screening development in clinical applications. Mol Cancer 2025; 24:93. [PMID: 40119343 PMCID: PMC11927140 DOI: 10.1186/s12943-025-02281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Tumor drug resistance presents a growing challenge in medical practice, particularly during anti-cancer therapies, where the emergence of drug-resistant cancer cells significantly complicates clinical treatment. In recent years, three-dimensional (3D) tumor culture technology, which more effectively simulates the in vivo physiological environment, has gained increasing attention in tumor drug resistance research and clinical applications. By mimicking the in vivo cellular microenvironment, 3D tumor culture technology not only recapitulates cell-cell interactions but also more faithfully reproduces the biological effects of therapeutic agents. Consequently, 3D tumor culture technology is emerging as a crucial tool in biomedical and clinical research. We summarize the benefits of 3D culture models and organoid technology, explore their application in the realm of drug resistance, drug screening, and personalized therapy, and discuss their potential application prospects and challenges in clinical transformation, with the aim of providing insights for optimizing cancer treatment strategies and advancing precision therapy.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi, China
| | - Xiaolan Lv
- Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council -Consejo Superior de Investigaciones Científicas,(UAM-CSIC), Madrid, 28049, Spain
| | - Lina Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Shi A, Shi Y, Li J, Ye M, Ma X, Peng Y, Gai K, Chen J. Advancements in 3D gel culture systems for enhanced angiogenesis in bone tissue engineering. J Mater Chem B 2025; 13:3516-3527. [PMID: 39998426 DOI: 10.1039/d4tb01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Angiogenesis-osteogenesis coupling is a crucial process in bone tissue engineering, requiring a suitable material structure for vessel growth. Recently, the 3D culture system has gained significant attention due to its benefits in cell growth, proliferation and tissue regeneration. Its most notable advantage is its ECM-like function, which supports endothelial cell adhesion and facilitates the formation of vascular-like networks-crucial for angiogenesis-osteogenesis coupling. Hydrogels, with their highly hydrophilic polymer network resembling the extracellular matrix, make the 3D gel culture system an ideal approach for angiogenesis due to its cellular integrity and adjustable properties. This article reviews the current use of 3D gel culture systems in bone tissue engineering, covering substrates, characteristics and processing technologies, thereby offering readers profound insights into these systems.
Collapse
Affiliation(s)
- Aijing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yixin Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Minghan Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiaoqing Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yuke Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Kuo Gai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Razavi ZS, Farokhi S, Mahmoudvand G, Karimi-Rouzbahani A, Farasati-Far B, Tahmasebi-Ghorabi S, Pazoki-Toroudi H, Saadat-Fakhr M, Afkhami H. Stem cells and bio scaffolds for the treatment of cardiovascular diseases: new insights. Front Cell Dev Biol 2024; 12:1472103. [PMID: 39726717 PMCID: PMC11669526 DOI: 10.3389/fcell.2024.1472103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 12/28/2024] Open
Abstract
Mortality and morbidity from cardiovascular diseases are common worldwide. In order to improve survival and quality of life for this patient population, extensive efforts are being made to establish effective therapeutic modalities. New treatment options are needed, it seems. In addition to treating cardiovascular diseases, cell therapy is one of the most promising medical platforms. One of the most effective therapeutic approaches in this area is stem cell therapy. In stem cell biology, multipotent stem cells and pluripotent stem cells are divided into two types. There is evidence that stem cell therapy could be used as a therapeutic approach for cardiovascular diseases based on multiple lines of evidence. The effectiveness of stem cell therapies in humans has been studied in several clinical trials. In spite of the challenges associated with stem cell therapy, it appears that resolving them may lead to stem cells being used in cardiovascular disease patients. This may be an effective therapeutic approach. By mounting these stem cells on biological scaffolds, their effect can be enhanced.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi-Rouzbahani
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahareh Farasati-Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Samaneh Tahmasebi-Ghorabi
- Master of Health Education, Research Expert, Clinical Research Development Unit, Emam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Masoud Saadat-Fakhr
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Ates B, Eroglu T, Sahsuvar S, Kirimli CE, Kocaturk O, Senay S, Gok O. Hydrogel-Integrated Heart-on-a-Chip Platform for Assessment of Myocardial Ischemia Markers. ACS OMEGA 2024; 9:42103-42115. [PMID: 39431078 PMCID: PMC11483411 DOI: 10.1021/acsomega.4c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Organ-on-a-chip platform scans offer a controllable environment and a physiological similarity to mimic human pathophysiology. In this study, a single-channel PDMS microchip was fabricated, characterized, and optimized to obtain a heart-on-a-chip platform, which is integrated with a hydrogel scaffold suitable for cardiomyocyte growth inside its channel. Single-channel chips with a size of 20 × 12 mm and a channel height ranging from 60 to 100 μm were produced using photolithography and soft lithography techniques. A gelatin-embedded alginate network-based hydrogel was further augmented with 3% (v/v) collagen type I. Pore sizes were in the range of 74-153 μm for H9C2 implantation and biomimicry. The hydrogels are characterized both on PDMS surfaces and in capillaries. The primary feature distinguishing this study from previous microchip studies is that it mimics the cell microenvironment much better using different hydrogel formulations instead of creating a 2D cell culture by passing fluids, such as fibronectin, for cell adhesion. Instead of using complex microchip designs, the chip system we created intends to provide a physiologically relevant copy by using a 3D cell culture to its advantage and a simple, single-channel architecture. The microchip study was combined with cardiomyocytes to create the heart-on-a-chip system and tested under normoxic and hypoxic conditions to create a myocardial ischemia model inside this channel. As a result, this heart-on-a-chip platform was shown to be utilized for the detection of several small-size biomarkers such as adenosine, ADP, lactic acid, l-isoleucine, l-glutamic acid, and oxidized glutathione via LC-MS/MS from control conditions and a myocardial ischemia model. Cell-embedded and hydrogel matrix-supported versions of this heart-on-a-chip system were successfully prepared and shown to provide powerful outputs with myocardial ischemia markers. In light of this research, these outputs aim to develop simple and biologically effective organ-on-a-chip systems for future research.
Collapse
Affiliation(s)
- Berna Ates
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Tolga Eroglu
- School
of Medicine, Acibadem Mehmet Ali Aydinlar
University, Istanbul 34752, Turkey
| | - Seray Sahsuvar
- Department
of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Ceyhun Ekrem Kirimli
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Ozgur Kocaturk
- Institute
of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Sahin Senay
- Department
of Cardiovascular Surgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Ozgul Gok
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| |
Collapse
|
5
|
Kiliç KC, Yazir Y, Öztürk A, Halbutoğullari ZS, Mert S, Gacar G, Duruksu G. Investigation of impacts of decellularized heart extracellular matrix and VEGF on cardiomyogenic differentiation of mesenchymal stem cell through Notch/Hedgehog signaling pathways. Tissue Cell 2023; 84:102195. [PMID: 37573608 DOI: 10.1016/j.tice.2023.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE Decellularization is the process to obtain natural scaffolds with tissue integrity and extracellular matrix components, and recellularization is used to produce tissue-like constructs with specific cell types. In this study, rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) were cultured on decellularized heart extracellular matrix. These cells were then induced to differentiate into cardiomyogenic cells under the stimulatory effect of vascular endothelial growth factor (VEGF) and other chemicals. This study aimed to investigate the effect of the cardiac extracellular matrix and VEGF on cardiomyogenic differentiation in the context of the Notch and Hedgehog signaling pathways. METHODS Heart samples extracted from rats were decellularized by serial application of detergent to remove cells from the tissue, and then recellularized with rBM-MSCs. The recellularized tissue matrices were then analyzed for cardiomyogenesis. Cardiomyogenic differentiation was performed on decellularized heart extracellular matrix (ECM; three-dimensional scaffolds) and culture plates (two-dimensional cell culture system) for 28 days to understand the effects of the heart extracellular matrix. In addition, differentiation was induced with and without the stimulatory effect of VEGF to understand the effect of VEGF on cardiomyogenic differentiation of rBM-MSCs. RESULTS Immunofluorescence staining showed that decellularization of the heart was performed effectively and successfully. After decellularization process, the heart extracellular matrix was completely free of cells. It was observed that rBM-MSCs transplanted onto the heart extracellular matrix remained viable and proliferated for 21 days after recellularization. The rBM-MSCs promoted cardiomyogenic differentiation in the conventional differentiation medium but were inversely affected by both VEGF and heart extracellular matrix proteins. Lower expression of connexin43 and cardiac troponin I genes was observed in cells induced by either matrix proteins or VEGF, compared to cells differentiated by chemical agents alone. CONCLUSION In this study, we investigated the effect of decellularized heart extracellular matrix and VEGF on cardiomyogenic differentiation of rBM-MSCs. On the decellularized cardiac extracellular matrix, rBM-MSCs maintained their viability by adhering to the matrix and proliferating further. The adhesion of the cells to the matrix also produced a physical stimulus that led to the formation of histological structures resembling myocardial layers. Chemical stimulation of the decellularized heart extracellular matrix and cardiomyogenic differentiation supplements resulted in increased expression of cardiomyogenic biomarkers through modulation of the Notch and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Kamil Can Kiliç
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Yusufhan Yazir
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Ahmet Öztürk
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Zehra Seda Halbutoğullari
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Serap Mert
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Chemistry and Chemical Processing Technologies, Kocaeli University, Kocaeli, Turkey; Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Turkey
| | - Gülçin Gacar
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
6
|
Shaik R, Xu J, Wang Y, Hong Y, Zhang G. Fibrin-Enriched Cardiac Extracellular Matrix Hydrogel Promotes In Vitro Angiogenesis. ACS Biomater Sci Eng 2023; 9:877-888. [PMID: 36630688 PMCID: PMC10064974 DOI: 10.1021/acsbiomaterials.2c01148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Angiogenesis is essential for cardiac repair after myocardial infarction. Promoting angiogenesis has been demonstrated as an effective approach for myocardial infarction treatment. Several different strategies for inducing myocardial angiogenesis have been explored, including exogenous delivery of angiogenic genes, proteins, microRNAs, cells, and extracellular vesicles. Various types of injectable hydrogels have been investigated for cardiac tissue repair. One of the most promising injectable hydrogels in cardiac regeneration is a cardiac extracellular matrix hydrogel that is derived from decellularized porcine myocardium. It can be delivered minimally invasively via transendocardial delivery. The safety and efficacy of cardiac extracellular matrix hydrogels have been shown in small and large animal myocardial infarction models as well as clinical trials. The main mechanisms underlying the therapeutic benefits of cardiac extracellular matrix hydrogels have been elucidated and involved in the modulation of the immune response, downregulation of pathways related to heart failure progression and fibrosis, upregulation of genes important for cardiac muscle contraction, and enhancing cardiomyocyte differentiation and maturation from stem cells. However, no potent capillary network formation induced by cardiac extracellular matrix hydrogels has been reported. In this study, we tested the feasibility of incorporating a fibrin matrix into cardiac extracellular matrix hydrogels to improve the angiogenic properties of the hydrogel. Our in vitro results demonstrate that fibrin-enriched cardiac extracellular matrix hydrogels can induce robust endothelial cell tube formation from human umbilical vein endothelial cells and promote the sprouting of human mesenchymal stem cell spheroids. The obtained information from this study is very critical toward the future in vivo evaluation of fibrin-enriched cardiac extracellular matrix hydrogels in promoting myocardial angiogenesis.
Collapse
Affiliation(s)
- Rubia Shaik
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, State College, University Park, Pennsylvania 16801, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
7
|
Chen X, Zhu L, Wang X, Xiao J. Insight into Heart-Tailored Architectures of Hydrogel to Restore Cardiac Functions after Myocardial Infarction. Mol Pharm 2023; 20:57-81. [PMID: 36413809 DOI: 10.1021/acs.molpharmaceut.2c00650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With permanent heart muscle injury or death, myocardial infarction (MI) is complicated by inflammatory, proliferation and remodeling phases from both the early ischemic period and subsequent infarct expansion. Though in situ re-establishment of blood flow to the infarct zone and delays of the ventricular remodeling process are current treatment options of MI, they fail to address massive loss of viable cardiomyocytes while transplanting stem cells to regenerate heart is hindered by their poor retention in the infarct bed. Equipped with heart-specific mimicry and extracellular matrix (ECM)-like functionality on the network structure, hydrogels leveraging tissue-matching biomechanics and biocompatibility can mechanically constrain the infarct and act as localized transport of bioactive ingredients to refresh the dysfunctional heart under the constant cyclic stress. Given diverse characteristics of hydrogel including conductivity, anisotropy, adhesiveness, biodegradability, self-healing and mechanical properties driving local cardiac repair, we aim to investigate and conclude the dynamic balance between ordered architectures of hydrogels and the post-MI pathological milieu. Additionally, our review summarizes advantages of heart-tailored architectures of hydrogels in cardiac repair following MI. Finally, we propose challenges and prospects in clinical translation of hydrogels to draw theoretical guidance on cardiac repair and regeneration after MI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Hong Y, Zhao Y, Li H, Yang Y, Chen M, Wang X, Luo M, Wang K. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1155052. [PMID: 37034258 PMCID: PMC10073467 DOI: 10.3389/fbioe.2023.1155052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The maturation of human stem cell-derived cardiomyocytes (hSC-CMs) has been a major challenge to further expand the scope of their application. Over the past years, several strategies have been proven to facilitate the structural and functional maturation of hSC-CMs, which include but are not limited to engineering the geometry or stiffness of substrates, providing favorable extracellular matrices, applying mechanical stretch, fluidic or electrical stimulation, co-culturing with niche cells, regulating biochemical cues such as hormones and transcription factors, engineering and redirecting metabolic patterns, developing 3D cardiac constructs such as cardiac organoid or engineered heart tissue, or culturing under in vivo implantation. In this review, we summarize these maturation strategies, especially the recent advancements, and discussed their advantages as well as the pressing problems that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yun Zhao
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Hao Li
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yunshu Yang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Meining Chen
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Xi Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Mingyao Luo
- Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Kai Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| |
Collapse
|
9
|
Fang Y, Liang S, Gao J, Wang Z, Li C, Wang R, Yu W. Extracellular matrix stiffness mediates radiosensitivity in a 3D nasopharyngeal carcinoma model. Cancer Cell Int 2022; 22:364. [PMCID: PMC9675143 DOI: 10.1186/s12935-022-02787-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose Radiotherapy is one of the essential treatment modalities for nasopharyngeal carcinoma (NPC), however, radioresistance still poses challenges. Three-dimensional (3D) tumor culture models mimic the in vivo growth conditions of cells more accurately than 2D models. This study is to compare the tumor biological behaviors of NPC cells in 2D, On-Surface 3D and Embedded 3D systems, and to investigate the correlation between radioresistance and extracellular matrix (ECM) stiffness. Methods The morphology and radioresistance of the human NPC cell line CNE-1 were observed in 2D and 3D systems. The CCK-8 assay, wounding healing assays, flow cytometry, soft agar assays, and western blot analysis were used to evaluate differences in biological behaviors such as proliferation, migration, cell cycle distribution, and stem cell activity. Different ECM stiffness systems were established by co-blending collagen and alginate in varying proportions. ECM stiffness was evaluated by compressive elastic moduli measurement and colony formation assay was used to assess radioresistance of NPC cells in systems with different ECM stiffness after irradiation. Results Compared to 2D models, the morphology of NPC cells in 3D culture microenvironments has more in common with in vivo tumor cells and 3D cultured NPC cells exhibit stronger radioresistance. Integrin β1 but not the epithelial-to-mesenchymal transition pathway in 3D models boost migration ability. Cell proliferation was enhanced, the proportion of tumor stem cells was increased, and G1/S phase arrest occurred in 3D models. NPC cells cultured in softer ECM systems (with low alginate proportions) exhibit striking resistance to ionizing radiation. Conclusion The tumor biological behaviors of NPC cells in 3D groups were obviously different from that of 2D. Radioresistance of NPC cells increased with the stiffness of ECM decreasing. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02787-5.
Collapse
Affiliation(s)
- Yanhua Fang
- grid.459353.d0000 0004 1800 3285The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001 Liaoning China
| | - Shanshan Liang
- grid.459353.d0000 0004 1800 3285The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001 Liaoning China
| | - Jianong Gao
- Outpatient Department, General Hospital of Northern Theater Command, No.83 Culture Road, Shenhe District, Shengyang, 110015 Liaoning China
| | - Zhe Wang
- grid.459353.d0000 0004 1800 3285Oncology Department, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001 Liaoning China
| | - Cheng Li
- grid.459353.d0000 0004 1800 3285The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001 Liaoning China
| | - Ruoyu Wang
- grid.459353.d0000 0004 1800 3285The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001 Liaoning China ,grid.459353.d0000 0004 1800 3285Oncology Department, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001 Liaoning China
| | - Weiting Yu
- grid.459353.d0000 0004 1800 3285The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001 Liaoning China ,grid.284723.80000 0000 8877 7471Affiliated Zhujiang Hospistal of Southern Medical University, Zhongshan Hospital of Dalian University, 253 Industrial Avenue, 510280 Guangzhou, People’s Republic of China
| |
Collapse
|