1
|
Zou W, Yin Q, Guo W, Dong Z, Guo Y. BBOX1-AS1 promotes gastric cardia adenocarcinoma progression via interaction with CtBP2 to facilitate the epithelial-mesenchymal transition process. Cancer Sci 2024; 115:3875-3889. [PMID: 39318101 PMCID: PMC11611761 DOI: 10.1111/cas.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
It is recognized that lncRNA BBOX1-AS1 exerts a crucial oncogenic property in several cancer types. However, the functions and underlying mechanisms of BBOX1-AS1 in the epithelial-mesenchymal transition (EMT) process of gastric cardia adenocarcinoma (GCA) have remained unclarified. The findings of this study demonstrated that GCA tissues had elevated BBOX1-AS1 expression levels, which was associated with a worse prognosis in GCA patients. BBOX1-AS1 dramatically enhanced cell proliferation, invasion, and TGF-β1-induced the EMT process in vitro. Further mechanism analysis revealed that BBOX1-AS1 could combine with CtBP2 and strengthen the interaction of CtBP2 and ZEB1. BBOX1-AS1 might regulate the E-cadherin expression through CtBP2/ZEB1 transcriptional complex-mediated transcriptional repression, further affecting the activation of the Wnt/β-catenin pathway and the EMT process. Overall, our findings demonstrate that BBOX1-AS1 might act as an lncRNA associated with EMT for facilitating GCA advancement via interaction with CtBP2 to facilitate the activation of Wnt/β-catenin pathway and the EMT process, which indicated that it might function as an exploitable treatment target for GCA patients.
Collapse
Affiliation(s)
- Wenxu Zou
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Qing Yin
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Wei Guo
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhiming Dong
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanli Guo
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
2
|
An J, Shi J, Yang C, Luo J, Li Y, Ren J, Lv Y, Zhang Y. Regulation of tumorigenesis and ferroptosis in non-small cell lung cancer by a novel BBOX1-AS1/miR-326/PROM2 axis. Mol Cell Biochem 2024; 479:2143-2155. [PMID: 37639200 DOI: 10.1007/s11010-023-04837-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) is associated with the tumorigenesis and ferroptosis of non-small cell lung cancer (NSCLC). BBOX1 antisense RNA 1 (BBOX1-AS1) functions as an oncogenic driver in NSCLC. Here, we aim to investigate the regulation effect and underlying mechanism of BBOX1-AS1 in NSCLC progression and ferroptosis. RNA expression was detected by quantitative real-time PCR (qRT-PCR), and protein expression was measured by immunoblotting. Cell growth was assessed by CCK-8 and colony formation assays. Transwell assay was applied to evaluate cell invasion and migration. RNA pull-down and dual-luciferase reporter assays were applied to verify the relationship between miR-326 and BBOX1-AS1 or prominin 2 (PROM2). The role of BBOX1-AS1 in NSCLC tumorigenicity was also analyzed by xenograft assays. Silencing BBOX1-AS1 or PROM2 impeded NSCLC cell growth, migration, and invasion. Silencing BBOX1-AS1 induced cell apoptosis and ferroptosis. BBOX1-AS1 up-regulated PROM2 expression, and re-expression of PROM2 reversed the effects of BBOX1-AS1 depletion on cell malignant phenotypes and ferroptosis. BBOX1-AS1 post-transcriptionally modulated PROM2 expression by sponging miR-326. MiR-326 was validated as a mediator of BBOX1-AS1 in regulating NSCLC cell malignant phenotypes and ferroptosis. Additionally, BBOX1-AS1 deficiency in vivo resulted in the suppression of xenograft tumor growth. Together, our study defines a novel BBOX1-AS1/miR-326/PROM2 axis in regulating NSCLC malignant progression and ferroptosis, offering new evidence for the oncogenic role of BBOX1-AS1 in NSCLC. These findings may provide a basis for the future usage of targeting BBOX1-AS1 in NSCLC treatment.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Cell Line, Tumor
- Cell Proliferation
- Ferroptosis/genetics
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Antisense
- gamma-Butyrobetaine Dioxygenase/genetics
Collapse
Affiliation(s)
- Jinlu An
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Jiang Shi
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Chao Yang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Junfang Luo
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yuning Li
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Jie Ren
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yuanjun Lv
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yang Zhang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Hu J, Liu J, Zhou S, Luo H. A review on the role of gamma-butyrobetaine hydroxylase 1 antisense RNA 1 in the carcinogenesis and tumor progression. Cancer Cell Int 2023; 23:263. [PMID: 37925403 PMCID: PMC10625699 DOI: 10.1186/s12935-023-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Gamma-butyrobetaine hydroxylase 1 antisense RNA 1 (BBOX1-AS1), located on human chromosome 11 p14, emerges as a critical player in tumorigenesis with diverse oncogenic effects. Aberrant expression of BBOX1-AS1 intricately regulates various cellular processes, including cell growth, epithelial-mesenchymal transition, migration, invasion, metastasis, cell death, and stemness. Notably, the expression of BBOX1-AS1 was significantly correlated with clinical-pathological characteristics and tumor prognoses, and it could also be used for the diagnosis of lung and esophageal cancers. Through its involvement in the ceRNA network, BBOX1-AS1 competitively binds to eight miRNAs in ten different cancer types. Additionally, BBOX1-AS1 can directly modulate downstream protein-coding genes or act as an mRNA stabilizer. The implications of BBOX1-AS1 extend to critical signaling pathways, including Hedgehog, Wnt/β-catenin, and MELK/FAK pathways. Moreover, it influences drug resistance in hepatocellular carcinoma. The present study provides a systematic review of the clinical significance of BBOX1-AS1's aberrant expression in diverse tumor types. It sheds light on the intricate molecular mechanisms through which BBOX1-AS1 influences cancer initiation and progression and outlines potential avenues for future research in this field.
Collapse
Affiliation(s)
- Juan Hu
- Medical Service Division, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Jipeng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Siwei Zhou
- Second School of Clinical Medicine, Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Zhang R, Gao X, Gu X. BBOX1-AS1: A novel oncogenic long non-coding RNA in human cancers. Pathol Res Pract 2023; 250:154810. [PMID: 37696243 DOI: 10.1016/j.prp.2023.154810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite the fact that they cannot encode proteins, many studies have identified roles they play in human cancers through diverse mechanisms. BBOX1-AS1, an oncogenic lncRNA, has recently been demonstrated to participate in tumorigenesis and progression of numerous cancers. Experimental evidence has determined that it participates in diverse biological process, including cell proliferation, invasion, migration, and apoptosis. The dysregulation of BBOX1-AS1 exerts its oncogenicity by acting as a competitive endogenous RNA (ceRNA) or by directly impacting downstream molecules and signaling pathways. Here we summarize the current understanding of the biological functions and clinical significance of BBOX1-AS1 for human cancers.
Collapse
Affiliation(s)
- Renfang Zhang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xiaohui Gao
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
5
|
Lin G, Wang Y, Deng L, Ye T. Prognostic effect of lncRNA BBOX1-AS1 in malignancies: a meta-analysis. Front Genet 2023; 14:1234040. [PMID: 37636267 PMCID: PMC10453800 DOI: 10.3389/fgene.2023.1234040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background: With the increasing number of new cancer cases and mortality rates, cancer has become a serious global health problem, but there are no ideal cancer biomarkers for effective diagnosis. Currently, mounting evidence demonstrates that lncRNAs play a fundamental role in cancer progression. BBOX1 anti-sense RNA 1 (BBOX1-AS1) is a recently clarified lncRNA and has been identified as dysregulated in various carcinomas, and it contributes to poor survival in cancer patients. Methods: We thoroughly searched six databases for eligible articles published as of 27, April 2023. The association of BBOX1-AS1 expression levels with prognostic and clinicopathological parameters was assessed by odds ratios (OR) and hazard ratios with 95% CIs. Additionally, we further validated our results utilizing the GEPIA online database. Results: Eight studies comprising 602 patients were included in this analysis. High BBOX1-AS1 expression indicated poor overall survival (OS) (hazard ratios = 2.30, 95% Cl [1.99, 2.67], p < 0.00001) when compared with low BBOX1-AS1 expression. Furthermore, BBOX1-AS1 expression was positively correlated with lymph node metastasis (OR = 3.00, 95% CI [1.71-5.28], p = 0.0001) and advanced tumor stage (OR = 3.74, 95% CI [2.63-5.32], p < 0.00001) for cancer patients. Moreover, BBOX1-AS1 was remarkably upregulated in 12 malignancies, and the elevated BBOX1-AS1 expression predicted poorer OS and worse disease-free survival (DFS) confirmed through the GEPIA online gene analysis tool. Conclusion: The findings highlight that BBOX1-AS1 was significantly associated with detrimental overall survival, disease-free survival, lymph node metastasis and tumor stage; thus, it could act as a novel promising biomarker to predict the clinicopathological characteristics and prognosis for various cancers.
Collapse
Affiliation(s)
- Guangyao Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongzhou Wang
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Tao Ye
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Li Y, Zhao H, Li N, Yuan C, Dong N, Wen J, Li Z, Wang Q, Wang L, Mao H. BBOX1-AS1 mediates trophoblast cells dysfunction via regulating hnRNPK/GADD45A axis†. Biol Reprod 2023; 108:408-422. [PMID: 36617174 DOI: 10.1093/biolre/ioad002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Recurrent pregnancy loss (RPL) is a common pathological problem during pregnancy, and its clinical etiology is complex and unclear. Dysfunction of trophoblasts may cause a series of pregnancy complications, including preeclampsia, fetal growth restriction, and RPL. Recently, lncRNAs have been found to be closely related to the occurrence and regulation of pregnancy-related diseases, but few studies have focused on their role in RPL. In this study, we identified a novel lncRNA BBOX1-AS1 that was significantly upregulated in villous tissues and serum of RPL patients. Functionally, BBOX1-AS1 inhibited proliferation, migration, invasion, tube formation and promoted apoptosis of trophoblast cells. Mechanistically, overexpression of BBOX1-AS1 activated the p38 and JNK MAPK signaling pathways by upregulating GADD45A expression. Further studies indicated that BBOX1-AS1 could increase the stability of GADD45A mRNA by binding hnRNPK and ultimately cause abnormal trophoblast function. Collectively, our study highlights that the BBOX1-AS1/hnRNPK/GADD45A axis plays an important role in trophoblast-induced RPL and that BBOX1-AS1 may serve as a potential target for the diagnosis of RPL.
Collapse
Affiliation(s)
- Yali Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Ning Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Chao Yuan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Nana Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jin Wen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zihui Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|