1
|
Zhuang H, Lin Y, Lin C, Zheng M, Li Y, Yao X, Xu Y. Transcriptome sequencing-based analysis of the molecular mechanism underlying the effect of lncRNA AC003090.1 on osteoporosis. J Orthop Surg Res 2025; 20:346. [PMID: 40189548 PMCID: PMC11974094 DOI: 10.1186/s13018-025-05634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
OBJECTIVE To analyze changes in the expression of osteoporosis (OP)-related genes across different bone types based on transcriptome sequencing, and to identify the key molecules and mechanisms involved in the progression of OP in order to better understand this process. METHODS Ten pairs of postmenopausal patients with osteoporosis (OP) and non-osteoporotic (non-OP) volunteers were included. Transcriptome sequencing was performed on six pairs of spongy and cortical bone tissues. The expression of FOXP1 was detected using quantitative real-time PCR (RT-qPCR) and receiver operating characteristic (ROC) curves. Magnetic-activated cell sorting was conducted, and the expression levels of AC003090.1, miR-203a-3p, and FOXP1 were measured using RT-qPCR. Human bone marrow stem cells (hBMSCs) were infected with a lentivirus carrying the AC003090.1 expression plasmid. The expression levels of Runx2, Opn, and Ocn in spongy and cortical bone samples, as well as in post-infection cells, were assessed through RT-qPCR. The expression levels of GSK-3β, β-catenin, and c-Myc were evaluated by performing RT-qPCR and Western blot analysis. RESULT A total of 2,102 out of 2,827 differentially expressed genes (DEGs) were identified between the cortical bone samples from patients with osteoporosis (OP) and the cortical/spongy bone samples of the control group. Among these, 1,482 were significantly up-regulated, and 620 were significantly down-regulated, while 1,146 were significantly up-regulated and 1,681 were significantly down-regulated. The expression of FOXP1 in tissue and bone tissue-derived mesenchymal stem cells (MSCs) from patients with OP was significantly lower than that in patients without OP. FOXP1 levels in bone tissue (cortical bone AUC = 0.825, P = 0.01405; spongy bone AUC = 0.800, P = 0.02338) could serve as predictors of OP. In addition, the overexpression of AC003090.1 significantly enhanced the transcription levels of Runx2, Opn, and Ocn; significantly upregulated the expression levels of β-catenin and c-Myc; and inhibited the expression of GSK-3β. Transfection with miR-203a-3p mimics and FOXP1 small interfering RNA reversed the effect of AC003090.1 on GSK-3β/β-catenin/c-Myc signaling. CONCLUSION FOXP1, as a molecular mediator of AC003090.1, affects the GSK-3β/β-catenin/c-Myc signaling pathway and promotes the osteogenic differentiation of hBMSCs, thus playing a key role in the progression of OP.
Collapse
Affiliation(s)
- Huafeng Zhuang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China
| | - Yongjun Lin
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China
| | - Chengye Lin
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China
| | - Miao Zheng
- Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yizhong Li
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China
| | - Xuedong Yao
- Department of Orthopedics, The Second Affiliated Hospital of FuJian University, QuanZhou, 362000, China.
| | - Youjia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Osteoporosis Clinical Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
2
|
Song Y, Gao H, Pan Y, Gu Y, Sun W, Wang Y, Liu J. ALKBH5 Regulates Osteogenic Differentiation via the lncRNA/mRNA Complex. J Dent Res 2024; 103:1119-1129. [PMID: 39311450 DOI: 10.1177/00220345241266775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Human adipose-derived stem cells (hASCs) are commonly used in bone tissue regeneration. The N6-methyladenosine (m6A) modification has emerged as a novel regulatory mechanism for gene expression, playing a critical role in osteogenic differentiation of stem cells. However, the precise role and mechanism of alkylation repair homolog 5 (ALKBH5) in hASC osteogenesis remain incompletely elucidated and warrant further investigation. Herein, we employed methylated RNA immunoprecipitation sequencing, RNA sequencing, and weighted gene coexpression network analysis to identify a key long noncoding RNA (lncRNA) in hASCs: lncRNA AK311120. Functional experiments demonstrated that lnc-AK311120 promoted the osteogenic differentiation of hASCs, while a mutation at the m6A central site A of lnc-AK311120 was found to decrease the level of m6A modification. The osteogenic effect of ALKBH5 was confirmed both in vitro and in vivo using a mandibular defect model in nude mice. Subsequent investigations revealed that knockdown of ALKBH5 resulted in a significant increase in the m6A modification level of lnc-AK311120, accompanied by a downregulation in the expression level of lnc-AK311120. Additional rescue experiments demonstrated that overexpression of lnc-AK311120 could restore the phenotype after ALKBH5 knockdown. We observed that AK311120 interacted with the RNA-binding proteins DExH-Box helicase 9 (DHX9) and YTH domain containing 2 (YTHDC2) to form a ternary complex, while mitogen-activated protein kinase kinase 7 (MAP2K7) served as the shared downstream target gene of DHX9 and YTHDC2. Knockdown of AK311120 led to a reduction in the binding affinity between DHX9/YTHDC2 and the target gene MAP2K7. Furthermore, ALKBH5 facilitated the translation of MAP2K7 and activated the downstream JNK signaling pathway through the AK311120-DHX9-YTHDC2 complex, without affecting its messenger RNA level. Collectively, we have investigated the regulatory effect and mechanism of ALKBH5-mediated demethylation of lncRNA in hASC osteogenesis for the first time, offering a promising approach for bone tissue engineering.
Collapse
Affiliation(s)
- Y Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Pan
- The First People's Hospital of Longquanyi District, West China Longquan Hospital Sichuan University, Chengdu, Sichuan, China
| | - Y Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Shi H, Yang Y, Xing H, Jia J, Xiong W, Guo S, Yang S. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. J Tissue Eng 2024; 15:20417314241286606. [PMID: 39371940 PMCID: PMC11456177 DOI: 10.1177/20417314241286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation, The First Hospital of China Medical University, Shenyang, China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Du X, Xin R, Chen X, Wang G, Huang C, Zhou K, Zhang S. TAF15 regulates the BRD4/GREM1 axis and activates the gremlin-1-NF-κB pathway to promote OA progression. Regen Ther 2023; 24:227-236. [PMID: 37496731 PMCID: PMC10366938 DOI: 10.1016/j.reth.2023.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
Background Anterior cruciate ligament (ACL) injury is recognized as a risk factor for osteoarthritis (OA) progression. Herein, the function of TAF15 in ACL injury-induced OA was investigated. Methods OA cell model and OA mouse model were established by interleukin-1 beta (IL-1β) stimulation and ACL transection administration, respectively. The pathological changes were analyzed by histopathology. The mRNA and protein expressions were assessed using qRT-PCR, Western blot and IHC. Chondrocyte viability and apoptosis were examined by CCK8 assay and TUNEL staining, respectively. The interactions between TAF15, BRD4 and GREM1 were analyzed by RIP or ChIP assay. Results TAF15 expression was markedly elevated in OA, and its knockdown suppressed IL-1β-induced chondrocyte apoptosis and ECM degradation in vivo and cartilage pathological changes in vitro. TAF15 promoted BRD4 mRNA stability, and TAF15 silencing's repression on chondrocyte apoptosis and ECM degradation induced by IL-1β was abrogated following BRD4 overexpression. BRD4 promoted GREM1 expression by directly binding with GREM1. In addition, the GREM1/NF-κB pathway functioned as the downstream pathway of BRD4 in promoting OA progression. Conclusion TAF15 upregulation facilitated chondrocyte apoptosis and ECM degradation during OA development by acting on the BRD4/GREM1/NF-κB axis, which provided a theoretical basis for the development of novel therapies for OA.
Collapse
Affiliation(s)
- Xiufan Du
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Ruomei Xin
- Danzhou People's Hospital, Nursing Department, Danzhou, 571700, Hainan, PR China
| | - Xiaoyan Chen
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Stomatology, Haikou, 570311, Hainan, PR China
| | - Guangji Wang
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Chunhang Huang
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Kai Zhou
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Department of Sports Medicine, Haikou, 570311, Hainan, PR China
| | - Shunli Zhang
- The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan, PR China
| |
Collapse
|
6
|
Zhang Y, Chen X, Yang X, Huang L, Qiu X. Mesenchymal Stem Cell-Derived from Dental Tissues-Related lncRNAs: A New Regulator in Osteogenic Differentiation. J Tissue Eng Regen Med 2023; 2023:4622584. [PMID: 40226409 PMCID: PMC11919082 DOI: 10.1155/2023/4622584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 04/15/2025]
Abstract
Odontogenic stem cells are mesenchymal stem cells (MSCs) with multipotential differentiation potential from different dental tissues. Their osteogenic differentiation is of great significance in bone tissue engineering. In recent years, it has been found that long noncoding RNAs (lncRNAs) participate in regulating the osteoblastic differentiation of stem cells at the epigenetic level, transcriptional level, and posttranscriptional level. We reviewed the existing lncRNA related to the osteogenic differentiation of odontogenic stem cells and emphasized the critical mechanism of lncRNA in the osteogenic differentiation of odontogenic stem cells. These findings are expected to be an important target for promoting osteoblastic differentiation of odontogenic stem cells in bone regeneration therapy with lncRNA.
Collapse
Affiliation(s)
- Yinchun Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| | - Xuan Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| | - XiaoXia Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| | - Lei Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| |
Collapse
|
7
|
Yi Y, Yang N, Yang Z, Tao X, Li Y. LncRNA TM1-3P Regulates Proliferation, Apoptosis and Inflammation of Fibroblasts in Osteoarthritis through miR-144-3p/ONECUT2 Axis. Orthop Surg 2022; 14:3078-3091. [PMID: 36178080 DOI: 10.1111/os.13530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study explores LncRNA TM1-3P effects on the proliferation, apoptosis, and inflammatory response of fibroblasts in osteoarthritis (OA) and its underlying mechanism. METHODS Bioinformatics was performed to analyze OA disease-related genes, miRNA profiles, and function. The targeted regulation of LncRNA TM1-3P and miR-144-3p, ONECUT2 and miR-144-3p were analyzed by dual luciferase reporter gene assay, RNA Binding Protein Immunoprecipitation (RIP), and RNA pull down. Histopathological morphology of the knee joint was observed by hematoxylin-eosin (HE) and Annona Red O/Fast Green. The expressions of mRNAs and proteins were detected by RT-qPCR, Western blot, and immunohistochemistry. Unpaired T test was used between groups, and the one-way analysis of variance of repeated measurement data was applied for multi-group comparison, following Tukey's post-test. RESULTS ONECUT2 and Smurf2 genes were significantly elevated in the osteoarthritis group compared with the normal group (P < 0.001, P < 0.001). Expressions of ONECUT2 and LncRNA TM1-3P were increased, and expression of miR-144-3p was decreased in interleukin (IL)-1β-induced human fibroblast synovial cells (hFSCs) (mRNA: 1.06 ± 0.24 vs. 3.29 ± 0.73, proteins: 0.22 ± 0.03 vs. 0.46 ± 0.22, 1.23 ± 0.22 vs. 3.76 ± 0.73, 1.06 ± 0.25 vs. 0.37 ± 0.13, P < 0.01, P < 0.001, P < 0.01, P < 0.05). Overexpression of miR-144-3p down-regulated the ONECUT2 expression, reduced cell proliferation, promoted apoptosis in hFSCs induced by IL-1β (mRNA: 0.89 ± 0.14 vs. 0.15 ± 0.01, P < 0.05; proteins: 0.46 ± 0.01 vs. 0.23 ± 0.01, P < 0.001; CCK8: 1.88 ± 0.07 vs. 1.65 ± 0.07; P < 0.05; EDU: 55.82 ± 1.44 vs 40.57 ± 2.24, P < 0.05; apoptosis: 10.57 ± 0.79 vs 16.36 ± 0.35, P < 0.0001). Overexpression of LncRNA TM1-3P up-regulated the expression of ONECUT2, promoted cell proliferation, and inhibited apoptosis (mRNA: 0.9 ± 0.09 vs 1.94 ± 0.12, P < 0.05; proteins: 0.61 ± 0.05 vs 0.76 ± 0.03, P > 0.05; CCK8: 2.07 ± 0.05 vs 2.47 ± 0.06; P < 0.01; EDU: 52.67 ± 1.17 vs 60.06 ± 3.24, P < 0.05; apoptosis: 10.57 ± 0.79 vs 16.36 ± 0.35, P < 0.001), which were reversed by the overexpression of miR-144-3p treatment (mRNA: 1.82 ± 0.07 vs 0.31 ± 0.07, P < 0.0001; proteins: 0.74 ± 0.02 vs 0.35 ± 0.01, P < 0.01; CCK8: 2.41 ± 0.01 vs 1.67 ± 0.02; P < 0.0001; EDU: 66.85 ± 2.86 vs 44.68 ± 1.97, P < 0.0001; apoptosis: 7.19 ± 0.19 vs 13.36 ± 0.53, P < 0.0001). Silencing LncRNA TM1-3P attenuated the injury of knee joint tissue, down-regulated the expression of ONECUT2, Smurf2, IL-1β, IL-6, TNF-α, and improved the expression of Rap1 in rats (0.71 ± 0.04 vs 0.48 ± 0.02, 0.68 ± 0.06 vs 0.36 ± 0.02, 0.74 ± 0.03 vs 0.49 ± 0.04, 0.78 ± 0.01 vs 0.54 ± 0.03, 0.68 ± 0.02 vs 0.4 ± 0.04, 0.24 ± 0.01 vs 0.4 ± 0.03, P < 0.05, P < 0.05, P < 0.05, P < 0.01, P < 0.01, P < 0.05). CONCLUSION LncRNA TM1-3P improved inflammation and damage of knee joints in OA rats through miR-144-3p/ONECUT2 axis, providing a new theoretical basis for gene therapy of OA.
Collapse
Affiliation(s)
- Yangfei Yi
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Ningyin Yang
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Zirui Yang
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yufei Li
- Department of Clinical Medicine, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|