1
|
Zhang F, Liu Q, Wang Y, Yin J, Meng X, Wang J, Zhao W, Liu H, Zhang L. Effects of surfactin stress on gene expression and pathological changes in Spodoptera litura. Sci Rep 2024; 14:30357. [PMID: 39638883 PMCID: PMC11621121 DOI: 10.1038/s41598-024-81946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Spodoptera litura (S. litura) is a polyphagous pest of the family Lepidoptera, which causes damage and yields losses to many crops. The long-term use of chemical pesticides for control not only seriously threatens environmental health, but also causes S. litura to develop drug resistance. Therefore, there is an urgent need to develop environmentally safe and friendly biogenic pesticides. However, the mechanism of action of the secondary metabolite (surfactin) of Bacillus Vélezensis (B. vélezensis) on lepidopteran pests (S. litura) has not been reported yet. We found that several metabolites and genes in S. litura were affected by surfactin exposure. The expressions of the metabolites (protoporphyrinogen (PPO), gluconolactone (GDL), and L-cysteate) were significantly down-regulated while glutamate and hydroxychloroquine were significantly up-regulated. The expression levels of genes related to drug metabolism and detoxification, include the glutathione s-transferase (GST) gene family and acetaldehyde dehydrogenase (ALDH), and apoptosis-inhibiting genes (seven in absentia homolog 1(SIAH1)) were significantly decreased. In addition, pathological changes occurred in intestinal wall cells, Malpighian tubule cells, and nerve cells of S. litura under surfactin stress. Conclusively, our results suggest that surfactin induces an increase in reactive oxygen species (ROS) and damages S. litura cells. Furthermore, based on the integrated analysis of transcriptomic and metabolomic data, it is hypothesized that surfactin may also trigger neurotoxicity and cardiotoxicity in S. litura while hindering the insect's detoxification processes. This study lays a foundation for further exploration of surfactin as a potential biopesticide.
Collapse
Affiliation(s)
- Feiyan Zhang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Qiuyue Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Yana Wang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Jialu Yin
- Hebei University of Science and Technology, Shijiazhuang, 050000, People's Republic of China
| | - Xianghe Meng
- Hebei General Hospital, Shijiazhuang, 050000, People's Republic of China
| | - Jiangping Wang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Wenya Zhao
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China.
| | - Liping Zhang
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, People's Republic of China.
| |
Collapse
|
2
|
John P, Sudandiradoss C. Structure, function and stability analysis on potential deleterious mutation ensemble in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for early detection of LUAD. Life Sci 2024; 358:123127. [PMID: 39427874 DOI: 10.1016/j.lfs.2024.123127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
AIMS Lung adenocarcinoma (LUAD) is the most prominent histological subtype among the lung cancer which is a leading cause in the cancer mortality rate. High mutational and glycolytic rates are the major reported alterations in the lung cancer. Here in our study we are elucidating the structural and functional role of key glycolytic enzyme Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and associated SNPs in LUAD progression. MATERIALS AND METHODS Our gene expression analysis reveals high expression of GAPDH in the LUAD. In silico tools and analysis were used for the identification and characterization of the deleterious SNPs. Molecular Docking and dynamics simulations (MDS) studies characterized the structural consequences of prioritized deleterious mutations. KEY FINDINGS The sequence based analysis to identify SNPs in GAPDH resulted in 28 deleterious SNPs and 6 SNPs among them showed deleterious and damaging effect. The structural based analysis resulted in 2 stabilizing SNPs of rs ids rs11549328 (D39Y) and rs200102749 (S51Y) in the conserved domain. The IDR and PTM analysis of the GAPDH sequence resulted an IDR region from 191 to 194 positions with an IDR score of 0.511, 0.520, 0.517 and 0.503 with the PTM modifications. SIGNIFICANCE The identified deleterious SNPs (D39Y and S51Y) fall in the functional and conserved domain of GAPDH. In addition, the existence of PTMs within the IDR region of the GAPDH may contribute to its enhanced glycolytic activity in LUAD. The results of our study provide potential background deleterious mutants the pathological aspect of GAPDH in LUAD progression.
Collapse
Affiliation(s)
- Pearl John
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India.
| |
Collapse
|
3
|
Yan M, Su Z, Pang X, Wang H, Dai H, Ning J, Liu S, Sun Q, Song J, Zhao X, Lu D. The CK1ε/SIAH1 axis regulates AXIN1 stability in colorectal cancer cells. Mol Oncol 2024; 18:2277-2297. [PMID: 38419282 PMCID: PMC11467792 DOI: 10.1002/1878-0261.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Casein kinase 1ε (CK1ε) and axis inhibitor 1 (AXIN1) are crucial components of the β-catenin destruction complex in canonical Wnt signaling. CK1ε has been shown to interact with AXIN1, but its physiological function and role in tumorigenesis remain unknown. In this study, we found that CK1δ/ε inhibitors significantly enhanced AXIN1 protein level in colorectal cancer (CRC) cells through targeting CK1ε. Mechanistically, CK1ε promoted AXIN1 degradation by the ubiquitin-proteasome pathway by promoting the interaction of E3 ubiquitin-protein ligase SIAH1 with AXIN1. Genetic or pharmacological inhibition of CK1ε and knockdown of SIAH1 downregulated the expression of Wnt/β-catenin-dependent genes, suppressed the viability of CRC cells, and restrained tumorigenesis and progression of CRC in vitro and in vivo. In summary, our results demonstrate that CK1ε exerted its oncogenic role in CRC occurrence and progression by regulating the stability of AXIN1. These findings reveal a novel mechanism by which CK1ε regulates the Wnt/β-catenin signaling pathway and highlight the therapeutic potential of targeting the CK1ε/SIAH1 axis in CRC.
Collapse
Affiliation(s)
- Mengfang Yan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
- School of PharmacyShenzhen University Medical School, Shenzhen UniversityChina
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
- Department of ResearchThe Affiliated Tumor Hospital of Guangxi Medical UniversityNanningChina
| | - Xiaoyi Pang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
| | - Hanbin Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
| | - Han Dai
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
| | - Jiong Ning
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
| | - Jiaxing Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
- Medical Scientific Research Center, Life Sciences InstituteGuangxi Medical UniversityNanningChina
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of PharmacologyShenzhen University Medical School, Shenzhen UniversityChina
- School of PharmacyShenzhen University Medical School, Shenzhen UniversityChina
| |
Collapse
|
4
|
Yu J, Zhao Y, Xie Y. Advances of E3 ligases in lung cancer. Biochem Biophys Rep 2024; 38:101740. [PMID: 38841185 PMCID: PMC11152895 DOI: 10.1016/j.bbrep.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related death, and the most common type of lung cancer is non-small cell lung cancer, which accounts for approximately 85 % of lung cancer diagnoses. Recent studies have revealed that ubiquitination acts as a crucial part of the development and progression of lung cancer. The E1-E2-E3 three-enzyme cascade has a core function in ubiquitination, so targeted adjustments of E3 ligases could be used in lung cancer treatment. Hence, we elucidate research advances in lung cancer-related E3 ligases by briefly describing the structure and categorization of E3 ligases. Here, we provide a detailed review of the mechanisms by which lung cancer-related E3 ligases modify substrate proteins and regulate signaling pathways to facilitate or suppress cancer progression. We hope to show a new perspective on targeted precision therapy for lung cancer.
Collapse
Affiliation(s)
- Jingwen Yu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yiqi Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Yue Xie
- Liaoning Academy of Chinese Medicine, Liaoning University Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
5
|
Zhou X, Gao F, Xu G, Puyang Y, Rui H, Li J. SIAH1 facilitates the migration and invasion of gastric cancer cells through promoting the ubiquitination and degradation of RECK. Heliyon 2024; 10:e32676. [PMID: 38961977 PMCID: PMC11219971 DOI: 10.1016/j.heliyon.2024.e32676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Siah E3 ubiquitin protein ligase 1 (SIAH1) has been reported to participate in the development of several human cancers, including gastric cancer. However, the effect and mechanism of SIAH1 on the migration and invasion of gastric cancer cells need be further explored. Here, we first analyzed the clinical value of SIAH1 in gastric cancer, and found that SIAH1 was up-regulated in gastric cancer and associated with a poor prognosis. In addition, silencing of SIAH1 significantly inhibited the migration and invasion of gastric cancer cells through inhibiting the expression of matrix metalloproteinase-9 (MMP9), while overexpression of SIAH1 had the opposite effect. Molecularly, we provided the evidence that reversion-inducing cysteine-rich protein with Kazal motifs (RECK) was a potential substrate of SIAH1. We determined that SIAH1 could destabilize RECK through promoting its ubiquitination and degradation via proteasome pathway. We also found RECK was involved in SIAH1-regulated gastric cancer cell migration and invasion. In conclusion, SIAH1 is up-regulated in gastric cancer, which promotes the migration and invasion of gastric cancer cells through regulating RECK-MMP9 pathway.
Collapse
Affiliation(s)
- Xiaohua Zhou
- School of Medicine, Southeast University, China
- Department of General Surgery, Nanjing Gaochun People's Hospital, China
| | - Fuping Gao
- Department of Pathology, Nanjing Gaochun People's Hospital, China
| | - Guangqi Xu
- Department of General Surgery, Nanjing Gaochun People's Hospital, China
| | - Yongqiang Puyang
- Department of General Surgery, Nanjing Gaochun People's Hospital, China
| | - Hongqing Rui
- Department of General Surgery, Nanjing Gaochun People's Hospital, China
| | - Junsheng Li
- School of Medicine, Southeast University, China
- Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, China
| |
Collapse
|
6
|
Sun J, Dong M, Xiang X, Zhang S, Wen D. Notch signaling and targeted therapy in non-small cell lung cancer. Cancer Lett 2024; 585:216647. [PMID: 38301911 DOI: 10.1016/j.canlet.2024.216647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
The Notch signaling pathway plays pivotal roles in cell proliferation, stemness and invasion of non-small cell lung cancer (NSCLC). The human Notch family consists of four receptors, namely Notch1, Notch2, Notch3, and Notch4. These receptors are transmembrane proteins that play crucial roles in various cellular processes. Notch1 mostly acts as a pro-carcinogenic factor in NSCLC but sometimes acts as a suppressor. Notch2 has been demonstrated to inhibit the growth and progression of NSCLC, whereas Notch3 facilitates these biological behaviors of NSCLC. The role of Notch4 in NSCLC has not been fully elucidated, but it is evident that Notch4 promotes tumor progression. At present, drugs targeting the Notch pathway are being explored for NSCLC therapy, a majority of which are already in the stage of preclinical research and clinical trials, with bright prospects in the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Jiajun Sun
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Meichen Dong
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, PR China.
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
7
|
Wu J, Yan Y. SIAH1 Promotes the Pyroptosis of Cardiomyocytes in Diabetic Cardiomyopathy via Regulating IκB-α/NF-κВ Signaling. Crit Rev Eukaryot Gene Expr 2024; 34:45-57. [PMID: 38842203 DOI: 10.1615/critreveukaryotgeneexpr.2024052773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Inflammation-mediated dysfunction of cardiomyocytes is the main cause of diabetic cardiomyopathy (DCM). The present study aimed to investigate the roles of siah E3 ubiquitin protein ligase 1 (SIAH1) in DCM. The online dataset GSE4172 was used to analyze the differentially expressed genes in myocardial inflammation of DCM patients. RT-qPCR was conducted to detect mRNA levels. Enzyme-Linked Immunosorbent Assay (ELISA) was performed to detect cytokine release. Western blot was used to detect protein expression. Lactate dehydrogenase (LDH) assay was used to determine cytotoxicity. In vitro ubiquitination assay was applied to determine the ubiquitination of nuclear factor kappa B inhibitor alpha (1κВ-α). Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect the death of cardiomyocytes. Flow cytometry was applied for determining cardiomyocyte pyroptosis. The results showed that SIAH1 was overexpressed in human inflammatory cardiomyopathy. High expression of SIAH1 was associated with inflammatory response. SIAH1 was also overexpressed lipopolysaccharide (LPS)-induced inflammatory cardiomyopathy model in vitro. However, SIAH1 knockdown suppressed the inflammatory-related pyroptosis of cardiomyocytes. SIAH1 promoted the ubiquitination of 1κВ-α and activated nuclear factor kappa В (NF-κВ) signaling, which promoted the pyroptosis of cardiomyocytes. In conclusion, SIAH1 exacerbated the progression of human inflammatory cardiomyopathy via inducing the ubiquitination of 1κВ-α and activation of NF-κВ signaling. Therefore, SIAHI/IκB-α/NF-κB signaling may be a potential target for human inflammatory cardiomyopathy.
Collapse
Affiliation(s)
| | - Yaoming Yan
- Laboratory Department, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
8
|
Liu Z, Luo P, Cao K, Hu Q, Hu B, Cui L, Wang X, Shi H, Zhang B, Wang R. SIAH1/CTR9 axis promotes the epithelial-mesenchymal transition of hepatocellular carcinoma. Carcinogenesis 2023; 44:304-316. [PMID: 37038329 DOI: 10.1093/carcin/bgad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 04/12/2023] Open
Abstract
SIAH1 has been reported to participate in several human cancers, including hepatocellular carcinoma (HCC). However, the effect of SIAH1 on the epithelial-mesenchymal transition (EMT) has not been reported in HCC cells. Here, we discovered the inhibitory effect of SIAH1 on HCC cell migration and invasion, which was related with regulating EMT. Molecularly, a yeast two-hybrid experiment indicated that Cln Three Requiring 9 (CTR9) was a potential interacting protein of SIAH1, which was further verified by co-immunoprecipitation assays. Furthermore, SIAH1 inhibited the EMT of HCC cells through negatively regulating CTR9. Importantly, CTR9 was ubiquitinated and degraded by SIAH1 via the proteasome pathway in HCC cells. Additionally, it was showed that SIAH1 mainly mediated the K48-linked polyubiquitination on CTR9. Finally, the protein level of CTR9 was found to be inversely correlated with SIAH1 in human HCC tissues. Summed up all together, these findings reveal that SIAH1/CTR9 axis promotes the EMT of HCC cells and is a promising therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Zhiyi Liu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengchao Luo
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghe Hu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Licheng Cui
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotian Wang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Zhang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renhao Wang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|