1
|
Das T, Bhar S, Ghosh D, Kabi B, Kar K, Chandra A. A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors. Bioorg Chem 2025; 156:108169. [PMID: 39862739 DOI: 10.1016/j.bioorg.2025.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more. They were found to increase the efficacy of the approved drugs when used in combination. In this review we presented bioinformatic analysis using available data from the Cancer Genome Atlas and Genotype-Tissue Expression databases, outlined the recent advancements in the application of HA-based HDACi for BC during preclinical investigation and clinical trials, tried to offer the rationale for targeting HDAC in BC with HA-based HDACi, summarised the challenges faced in the successful clinical application of HDACi, and proposed potential strategies to address these challenges, aiming to enhance treatment outcomes in BC. Abbreviations: ABCG2, ATP-binding cassette super-family G member 2; ABC, ATP-binding cassette; ADP, Adenosine diphosphate; APC, Antigen presenting cell; AML, Acute myeloid leukemia; ARH1, Aplysia ras homolog 1; BCRP, Breast cancer resistance protein; BRCA, Breast invasive carcinoma; Bax, B-cell lymphoma associated X; CK5, Cytokeratin 5; CK14, Cytokeratin 14; CK17, Cytokeratin 17; CoRESTMiDAC, Co-repressor for element-1-silencing transcription factor; CRM1, Chromosomal maintenance 1; CTCL, Cutaneous T-cell lymphoma; DNMT, DNA methyltransferase; DFS, Disease-free survival; ER, Oestrogen receptor; EMT, Epithelial-mesenchymal transition; FGFR1, Fibroblast growth factor receptor 1; GEPIA, Gene Expression Profiling Interactive Analysis; GTEx, Genotype tissue expression; HAT, Histone acetylase; HDAC, Histone deacetylase; HDF, Human dermal fibroblast; HER2, Human epidermal growth factor receptor 2; HDLP, Histone deacetylase-like protein; Hsp90, Heat shock protein 90; HSF1, Heat shock factor 1; HeLa, Henrietta Lacks; HER1, Human epidermal growth factor receptor 1; IARC, International Agency for Research on Cancer; IL-10, Interleukin-10; KAP1, KRAB associated protein 1; MDM2, Mouse double minute 2 homolog; MDR, Multidrug resistance; MCF-7, Michigan cancer foundation-7; MEF-2, Myocyte enhancer factor-2MMP- Matrix metalloproteinase; NAD, Nicotinamide adenine dinucleotide; NuRD, Nucleosome remodelling and deacetylation; NF- κ B, Nuclear factor kappa light chain enhancer of activated B cell; NES, Nuclear export signal; NLS, Nuclear localization signal; NCoR, Nuclear receptor corepressor; NCT, National clinical trial; OS, Overall survival; PR, Progesterone receptor; PI3K, Phosphoinositide 3-kinase; PAX3, Paired box gene 3; P-gp, P-glycoprotein; ROS, Reactive oxygen species; SIRT, Sirtuin; SMRT, Silencing mediator for retinoid and thyroid receptor; STAT3, Signal transducer and activator of transcription-3; SAR, Structure-activity relationship; SHP1, Src homology region 2 domain-containing phosphatase 1; SAHA, Suberoylanilide hydroxamic acid; SMEDDS, Self micro emulsifying drug delivery system; TNBC, Triple-negative breast cancer; TSA, Trichostatin A; ZBG, Zinc binding group.
Collapse
Affiliation(s)
- Tanima Das
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Sunandita Bhar
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Diya Ghosh
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Bikash Kabi
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Kanisha Kar
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Arpita Chandra
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
2
|
Kiełbowski K, Szwedkowicz A, Plewa P, Bakinowska E, Becht R, Pawlik A. Anticancer properties of histone deacetylase inhibitors - what is their potential? Expert Rev Anticancer Ther 2025; 25:105-120. [PMID: 39791841 DOI: 10.1080/14737140.2025.2452338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Histone modifications are crucial epigenetic mechanisms for regulating gene expression. Histone acetyltransferases and deacetylases (HDACs) catalyze histone acetylation, a process that mediates transcription. Over recent decades, studies have demonstrated that targeting histone acetylation can be effective in cancer treatment, leading to the development and approval of several HDAC inhibitors. AREAS COVERED A comprehensive literature review was conducted using the PubMed database to identify studies evaluating the anticancer efficacy of approved and novel HDAC inhibitors. EXPERT OPINION Accumulating evidence highlights the promising benefits of combining HDAC inhibitors with other anticancer agents. Additionally, HDAC-targeting therapeutics could enhance the sensitivity of cancer cells to chemotherapeutics or targeted tyrosine kinase inhibitors, thereby improving overall treatment outcomes. Future clinical studies must focus on optimizing combination therapies to ensure efficacy while maintaining manageable safety profiles.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| | - Agata Szwedkowicz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
3
|
Lopes N, Salta S, Flores BT, Miranda-Gonçalves V, Correia MP, Gigliano D, Guimarães R, Henrique R, Jerónimo C. Anti-tumour activity of Panobinostat in oesophageal adenocarcinoma and squamous cell carcinoma cell lines. Clin Epigenetics 2024; 16:102. [PMID: 39097736 PMCID: PMC11297794 DOI: 10.1186/s13148-024-01700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Oesophageal cancer remains a challenging disease with high mortality rates and few therapeutic options. In view of these difficulties, epigenetic drugs have emerged as potential alternatives for patient care. The goal of this study was to evaluate the effect and biological consequences of Panobinostat treatment, an HDAC (histone deacetylase) inhibitor already approved for treatment of patients with multiple myeloma, in oesophageal cell lines of normal and malignant origin, with the latter being representative of the two main histological subtypes: adenocarcinoma and squamous cell carcinoma. RESULTS Panobinostat treatment inhibited growth and hindered proliferation, colony formation and invasion of oesophageal cancer cells. Considering HDAC tissue expression, HDAC1 was significantly upregulated in normal oesophageal epithelium in comparison with tumour tissue, whereas HDAC3 was overexpressed in oesophageal cancer compared to non-malignant mucosa. No differences between normal and tumour tissue were observed for HDAC2 and HDAC8 expression. CONCLUSIONS Panobinostat exposure effectively impaired malignant features of oesophageal cancer cells. Because HDAC3 was shown to be overexpressed in oesophageal tumour samples, this epigenetic drug may represent an alternative therapeutic option for oesophageal cancer patients.
Collapse
Affiliation(s)
- Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Doctoral Program in Pathology and Molecular Genetics, ICBAS - School of Medicine and Biomedical Sciences - University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Bianca Troncarelli Flores
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Margareta P Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Davide Gigliano
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rita Guimarães
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 2024; 41:84. [PMID: 38438564 DOI: 10.1007/s12032-024-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
5
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Almalki WH, Lee LH, Ardianto C, Ming LC, Bouyahya A. Molecular mechanisms underlying the clinical efficacy of panobinostat involve Stochasticity of epigenetic signaling, sensitization to anticancer drugs, and induction of cellular cell death related to cellular stresses. Biomed Pharmacother 2023; 164:114886. [PMID: 37224752 DOI: 10.1016/j.biopha.2023.114886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
6
|
Lian B, Chen X, Shen K. Inhibition of histone deacetylases attenuates tumor progression and improves immunotherapy in breast cancer. Front Immunol 2023; 14:1164514. [PMID: 36969235 PMCID: PMC10034161 DOI: 10.3389/fimmu.2023.1164514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Breast cancer is one of the common malignancies with poor prognosis worldwide. The treatment of breast cancer patients includes surgery, radiation, hormone therapy, chemotherapy, targeted drug therapy and immunotherapy. In recent years, immunotherapy has potentiated the survival of certain breast cancer patients; however, primary resistance or acquired resistance attenuate the therapeutic outcomes. Histone acetyltransferases induce histone acetylation on lysine residues, which can be reversed by histone deacetylases (HDACs). Dysregulation of HDACs via mutation and abnormal expression contributes to tumorigenesis and tumor progression. Numerous HDAC inhibitors have been developed and exhibited the potent anti-tumor activity in a variety of cancers, including breast cancer. HDAC inhibitors ameliorated immunotherapeutic efficacy in cancer patients. In this review, we discuss the anti-tumor activity of HDAC inhibitors in breast cancer, including dacinostat, belinostat, abexinostat, mocetinotat, panobinostat, romidepsin, entinostat, vorinostat, pracinostat, tubastatin A, trichostatin A, and tucidinostat. Moreover, we uncover the mechanisms of HDAC inhibitors in improving immunotherapy in breast cancer. Furthermore, we highlight that HDAC inhibitors might be potent agents to potentiate immunotherapy in breast cancer.
Collapse
Affiliation(s)
| | | | - Kunwei Shen
- *Correspondence: Xiaosong Chen, ; Kunwei Shen,
| |
Collapse
|