1
|
Sutkowska K, Koper-Lenkiewicz OM, Matowicka-Karna J, Kamińska J. Impact of the Transforming Growth Factor β (TGF-β) on Brain Aneurysm Formation and Development: A Literature Review. Cell Mol Neurobiol 2025; 45:46. [PMID: 40392340 PMCID: PMC12092881 DOI: 10.1007/s10571-025-01572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
The mechanisms underlying the formation and rupture of intracranial aneurysms remain unclear. Rupture of the aneurysmal wall causes subarachnoid hemorrhage, with a mortality rate of 35-50%. Literature suggests that rupture is associated with the remodeling of the aneurysmal wall, including endothelial cell damage, smooth muscle cells (SMCs) proliferation, and inflammatory cell infiltration, particularly macrophages. Transforming growth factor β (TGF-β) is a multifunctional factor that plays a diverse role in cell growth and differentiation. It is crucial for strengthening vessel walls during angiogenesis and also regulates the proliferation of SMCs, indicating the potential involvement of TGF-β signaling in the pathogenesis and development of cerebral aneurysms. This review examines the complex role of TGF-β, its receptors, and signaling pathways in cerebral aneurysm formation and progression. Understanding the molecular mechanisms of TGF-β signaling in aneurysm development is vital for identifying potential therapeutic targets to prevent aneurysm rupture. Further research is necessary to fully elucidate the role of TGF-β in aneurysm pathophysiology, which could lead to the development of novel therapeutic strategies for aneurysm prevention and management, particularly in preventing subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Kinga Sutkowska
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Clinical Hospital of the Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzego Waszyngtona St., 15-269, Białystok, Poland.
| |
Collapse
|
2
|
Li MC, Chang PY, Luo HR, Chang LY, Lin CY, Yang CY, Lee OKS, Wu Lee YH, Tarng DC. Functioning tailor-made 3D-printed vascular graft for hemodialysis. J Vasc Access 2024; 25:244-253. [PMID: 35773975 DOI: 10.1177/11297298221086173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The two ends of arteriovenous graft (AVG) are anastomosed to the upper limb vessels by surgery for hemodialysis therapy. However, the size of upper limb vessels varies to a large extent among different individuals. METHODS According to the shape and size of neck vessels quantified from the preoperative computed tomography angiographic scan, the ethylene-vinyl acetate (EVA)-based AVG was produced in H-shape by the three-dimensional (3D) printer and then sterilized. This study investigated the function of this novel 3D-printed AVG in vitro and in vivo. RESULTS This 3D-printed AVG can be implanted in the rabbit's common carotid artery and common jugular vein with ease and functions in vivo. The surgical procedure was quick, and no suture was required. The blood loss was minimal, and no hematoma was noted at least 1 week after the surgery. The blood flow velocity within the implanted AVG was 14.9 ± 3.7 cm/s. Additionally, the in vitro characterization experiments demonstrated that this EVA-based biomaterial is biocompatible and possesses a superior recovery property than ePTFE after hemodialysis needle cannulation. CONCLUSIONS Through the 3D printing technology, the EVA-based AVG can be tailor-made to fit the specific vessel size. This kind of 3D-printed AVG is functioning in vivo, and our results realize personalized vascular implants. Further large-animal studies are warranted to examine the long-term patency.
Collapse
Affiliation(s)
- Ming-Chia Li
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
| | - Huai-Rou Luo
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
| | - Ling-Yuan Chang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
| | - Chuan-Yi Lin
- Taiwan Instrument Research Center, National Applied Research Laboratories, Hsinchu
| | - Chih-Yu Yang
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
| | - Der-Cherng Tarng
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
| |
Collapse
|
3
|
Chen F, Luo JF, Wan R. High shear stress attenuated arterial neointimal hyperplasia accompanied by changes in yes-associated protein/jun N-terminal kinase/vascular cell adhesion protein 1 expression. Vascular 2023; 31:163-173. [PMID: 35038282 DOI: 10.1177/17085381211058335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Abnormal neointimal hyperplasia (NIH) is known as the predominant mechanism in the pathogenesis of arterial restenosis after balloon angioplasty. Low shear stress (SS) is known to augment balloon injury-induced NIH. The aim of this study is to study the effect and mechanisms of an increase of shear stress caused by arteriovenous fistula could alleviate arterial NIH caused by balloon injury. METHODS AND RESULTS Eighteen male rabbits were randomly divided into three groups: BI-the rabbits received a balloon injury to right common carotid artery (CCA). BI+AVF-the rabbits received a balloon injury to right CCA and a carotid-jugular AVF. Control-the animals received no surgery. After 21 days, CCA samples were harvested for histological staining, immunohistochemistry, and western blot analysis. The luminal shear stress of the BI+AVF group increased from 13.8 ± 1.0 dyn/cm2 before surgery to 30.9 ± 1.7 dyn/cm2 right after surgery (p < 0.01). This value was higher than that of the BI or Control groups at any timepoint. The neointimal area and neointima/media area ratio in the BI+AVF group were significantly lower than those in the BI group. In the BI group, the cellular proliferation, the protein levels of yes-associated protein (YAP), connective tissue growth factor (CTGF), phospho-c-Jun N-terminal kinase (pJNK), and vascular cell adhesion protein 1 (VCAM1) increased, whereas the protein levels of SMCs specific genes decreased. In the BI+AVF group, the opposite effect was observed as cellular proliferation and the protein levels of YAP, CTGF, pJNK, and VCAM1 decreased, the protein levels of SMCs specific genes increased. CONCLUSION The arteriovenous fistula alleviated the balloon injury-induced arterial NIH. It elevated the luminal shear stress and inhibited SMCs phenotypic modulation to the synthetic state, as well as suppressing the over-activation of YAP, JNK, and VCAM1.
Collapse
Affiliation(s)
- Feng Chen
- Department of Vascular and Interventional Radiology, The Second Affiliated Hospital, 196534Nanchang University, Nanchang, China
| | - Jun Fu Luo
- Department of Vascular and Interventional Radiology, The Second Affiliated Hospital, 196534Nanchang University, Nanchang, China
| | - Rong Wan
- The Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, 196534Nanchang University, Nanchang, China
| |
Collapse
|
4
|
He Y, Shiu YT, Imrey PB, Radeva MK, Beck GJ, Gassman JJ, Northrup HM, Roy-Chaudhury P, Berceli SA, Cheung AK. Association of Shear Stress with Subsequent Lumen Remodeling in Hemodialysis Arteriovenous Fistulas. Clin J Am Soc Nephrol 2023; 18:72-83. [PMID: 36446600 PMCID: PMC10101625 DOI: 10.2215/cjn.04630422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Blood flow-induced wall shear stress is a strong local regulator of vascular remodeling, but its effects on arteriovenous fistula (AVF) remodeling are unclear. METHODS In this prospective cohort study, we used computational fluid dynamics simulations and statistical mixed-effects modeling to investigate the associations between wall shear stress and AVF remodeling in 120 participants undergoing AVF creation surgery. Postoperative magnetic resonance imaging data at 1 day, 6 weeks, and 6 months were used to derive current wall shear stress by computational fluid dynamic simulations and to quantify subsequent changes in AVF lumen cross-sectional area at 1-mm intervals along the proximal artery and AVF vein. RESULTS Combining artery and vein data, prior mean wall shear stress was significantly associated with lumen area expansion. Mean wall shear stress at day 1 was significantly associated with change in lumen area from day 1 to week 6 (11% larger area per interquartile range [IQR] higher mean wall shear stress, 95% confidence interval [95% CI], 5% to 18%; n =101), and mean wall shear stress at 6 weeks was significantly associated with change in lumen area from 6 weeks to month 6 (14% larger area per IQR higher, 95% CI, 3% to 28%; n =52). The association of mean wall shear stress at day 1 with lumen area expansion from day 1 to week 6 differed significantly by diabetes ( P =0.009): 27% (95% CI, 17% to 37%) larger area per IQR higher mean wall shear stress without diabetes and 9% (95% CI, -1% to 19%) with diabetes. Oscillatory shear index at day 1 was significantly associated with change in lumen area from day 1 to week 6 (5% smaller area per IQR higher oscillatory shear index, 95% CI, 3% to 7%), and oscillatory shear index at 6 weeks was significantly associated with change in lumen from 6 weeks to month 6 (7% smaller area per IQR higher oscillatory shear index, 95% CI, 2% to 11%). Wall shear stress spatial gradient was not significantly associated with subsequent remodeling. In a joint model, wall shear stress and oscillatory shear index statistically significantly interacted in their associations with lumen area expansion in a complex nonlinear fashion. CONCLUSIONS Higher wall shear stress and lower oscillatory shear index were associated with greater lumen expansion after AVF creation surgery.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
- Renal Section, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Peter B. Imrey
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Milena K. Radeva
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Gerald J. Beck
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Jennifer J. Gassman
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
- Department of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Hannah M. Northrup
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - Prabir Roy-Chaudhury
- Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, North Carolina
- Department of Medicine, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
- Renal Section, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
5
|
Yang CY, Chang PY, Wu BS, Tarng DC, Lee OKS. Mechanical and chemical cues synergistically promote human venous smooth muscle cell osteogenesis through integrin β1-ERK1/2 signaling: A cell model of hemodialysis fistula calcification. FASEB J 2021; 35:e22042. [PMID: 34758125 DOI: 10.1096/fj.202101064rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
Arteriovenous fistula (AVF) is the vascular access of choice for renal replacement therapy. However, AVF is susceptible to calcification with a high prevalence of 40%-65% in chronic hemodialysis patients. Repeated needle puncture for hemodialysis cannulation results in intimal denudation of AVF. We hypothesized that exposure to blood shear stress in the medial layer promotes venous smooth muscle cell (SMC) osteogenesis. While previous studies of shear stress focused on arterial-type SMCs, SMCs isolated from the vein had not been investigated. This study established a venous cell model of AVF using the fluid shear device, combined with a high phosphate medium to mimic the uremic milieu. Osteogenic gene expression of venous SMCs upon mechanical and chemical cues was analyzed in addition to the activated cell signaling pathways. Our findings indicated that upon shear stress and high phosphate environment, mechanical stimulation (shear stress) had an additive effect in up-regulation of an early osteogenic marker, Runx2. We further identified that the integrin β1-ERK1/2 signaling pathway was responsible for the molecular basis of venous SMC osteogenesis upon shear stress exposure. Mitochondrial biogenesis also took part in the early stage of this venopathy pathogenesis, evident by the up-regulated mitochondrial transcription factor A and mitochondrial DNA polymerase γ in venous SMCs. In conclusion, synergistic effects of fluid shear stress and high phosphate induce venous SMC osteogenesis via the ERK1/2 pathway through activating the mechanosensing integrin β1 signaling. The present study identified a promising druggable target for reducing AVF calcification, which deserves further in vivo investigations.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Ministry of Education, Taipei, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bo-Sheng Wu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Ministry of Education, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Liu CD, Chen F. Increase of wall shear stress caused by arteriovenous fistula reduces neointimal hyperplasia after stent implantation in healthy arteries. Vascular 2020; 28:396-404. [PMID: 32228224 DOI: 10.1177/1708538120913748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Wall shear stress plays a critical role in neointimal hyperplasia after stent implantation. It has been found that there is an inverse relation between wall shear stress and neointimal hyperplasia. This study hypothesized that the increase of arterial wall shear stress caused by arteriovenous fistula could reduce neointimal hyperplasia after stents implantation. METHODS AND RESULTS Thirty-six male rabbits were randomly divided into three groups: STENT, rabbits received stent implantation into right common carotid artery; STENT/arteriovenous fistula, rabbits received stent implantation into right common carotid artery and carotid-jugular arteriovenous fistula; Control, rabbits received no treatment. After 21 days, stented common carotid artery specimens were harvested for histological staining and protein expression analysis. In STENT group, wall shear stress maintained at a low level from 43.2 to 48.9% of baseline. In STENT/arteriovenous fistula group, wall shear stress gradually increased to 86% over baseline. There was a more significant neointimal hyperplasia in group STENT compared with the STENT/arteriovenous fistula group (neointima area: 0.87 mm2 versus 0.19 mm2; neointima-to-media area ratio: 1.13 versus 0.18). Western blot analysis demonstrated that the protein level of endothelial nitric oxide synthase in STENT group was significantly lower than that in STENT/arteriovenous fistula group, but the protein levels of proliferating cell nuclear antigen, vascular cell adhesion molecule 1, phospho-p38 mitogen-activated protein kinase (Pp38), and phospho-c-Jun N-terminal kinase in STENT group were significantly higher than that in the STENT group. CONCLUSION High wall shear stress caused by arteriovenous fistula as associated with the induction in neointimal hyperplasia after stent implantation. The underlying mechanisms may be related to modulating the expression and activation of endothelial nitric oxide synthase, vascular cell adhesion molecule 1, p38, and c-Jun N-terminal kinase.
Collapse
Affiliation(s)
- Chong Dong Liu
- Department of Vascular Surgery, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Feng Chen
- Department of Vascular Surgery, the Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Abstract
Arteriovenous fistulas (AVFs) are essential for patients and clinicians faced with end-stage renal disease (ESRD). While this method of vascular access for hemodialysis is preferred to others due to its reduced rate of infection and complications, they are plagued by intimal hyperplasia. The pathogenesis of intimal hyperplasia and subsequent thrombosis is brought on by uremia, hypoxia, and shear stress. These forces upregulate inflammatory and proliferative cytokines acting on leukocytes, fibroblasts, smooth muscle cells, and platelets. This activation begins initially with the progression of uremia, which induces platelet dysfunction and primes the body for an inflammatory response. The vasculature subsequently undergoes changes in oxygenation and shear stress during AVF creation. This propagates a strong inflammatory response in the vessel leading to cellular proliferation. This combined response is then further subjected to the stressors of cannulation and dialysis, eventually leading to stenosis and thrombosis. This review aims to help interventional radiologists understand the biological changes and pathogenesis of access failure.
Collapse
Affiliation(s)
- Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Winkel LC, Hoogendoorn A, Xing R, Wentzel JJ, Van der Heiden K. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis 2015; 241:100-10. [PMID: 25969893 DOI: 10.1016/j.atherosclerosis.2015.04.796] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/12/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed.
Collapse
Affiliation(s)
- Leah C Winkel
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ayla Hoogendoorn
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ruoyu Xing
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jolanda J Wentzel
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Hemodynamic effect of Neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Med Eng Phys 2011; 33:573-80. [DOI: 10.1016/j.medengphy.2010.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 12/06/2010] [Accepted: 12/14/2010] [Indexed: 11/15/2022]
|
10
|
Burghoff S, Schrader J. Secretome of human endothelial cells under shear stress. J Proteome Res 2011; 10:1160-9. [PMID: 21184611 DOI: 10.1021/pr100937a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells are exposed to different types of shear stress which triggers the secretion of subsets of proteins. In this study, we analyzed the secretome of endothelial cells under static, laminar, and oscillatory flow. To differentiate between endogenously expressed and added proteins, isolated human umbilical vein endothelial cells were labeled with l-Lysine-(13)C(6),(15)N(2) and l-Arginine-(13)C(6),(15)N(4). Shear stress was applied for 24 h using a cone-and-plate viscometer. Proteins from the supernatants were isolated, trypsinized, and finally analyzed using LC-MS/MS (LTQ). Under static control condition 395 proteins could be identified, of which 78 proteins were assigned to the secretome according to Swiss-Prot database. Under laminar shear stress conditions, 327 proteins (83 secreted) and under oscillatory shear stress 507 proteins (79 secreted) were measured. We were able to identify 6 proteins specific for control conditions, 8 proteins specific for laminar shear stress, and 5 proteins specific for oscillatory shear stress. In addition, we identified flow-specific secretion patterns like the increased secretion of cell adhesion proteins and of proteins involved in protein binding. In conclusion, the identification of shear stress specific secreted proteins (101 under different flow conditions) emphasizes the role of endothelial cells in modulating the plasma composition according to the physiological requirements.
Collapse
Affiliation(s)
- Sandra Burghoff
- Institute for Cardiovascular Physiology, Heinrich Heine University, Duesseldorf, Germany.
| | | |
Collapse
|
11
|
Effects of Axial Stretch on Cell Proliferation and Intimal Thickness in Arteries in Organ Culture. Cell Mol Bioeng 2010; 3:286-295. [PMID: 21116478 DOI: 10.1007/s12195-010-0128-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intimal hyperplasia (IH) remains the major cause of intermediate and long-term failure of vascular grafts and endovascular interventions. Arteries are subjected to a significant longitudinal stress in addition to the shear stress and tensile stress from the blood flow. The aim of this study was to determine the effect of axial stretch on cell proliferation and IH in arteries. Porcine carotid arteries, intact or endothelial cell (EC) denudated, were maintained ex vivo at different stretch ratios (1.3, 1.5, and 1.8) and flow rates (16 or 160 mL/min) while remaining at physiologic pressure for 7 days. The viability of the arteries was verified with norepinephrine, carbachol, and sodium nitroprusside stimulations, and the cell proliferation was detected using bromodeoxyuridine labeling and immunostaining. Our results showed that the axial stretch ratio did not significantly affect intimal thickness and cell proliferation in normal arteries. However, axial stretch increased the neointimal thickness in EC denudated arteries cultured under low flow conditions. The cell proliferation increased significantly in the intima and inner half of the media of the EC denudated arteries under normal or elevated axial stretch in comparison to intact arteries at the same stretch ratio. These results demonstrated that axial stretch with EC denudation and low flow increases neointimal formation and cell proliferation in the arteries.
Collapse
|
12
|
Subbotin VM. Analysis of arterial intimal hyperplasia: review and hypothesis. Theor Biol Med Model 2007; 4:41. [PMID: 17974015 PMCID: PMC2169223 DOI: 10.1186/1742-4682-4-41] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 10/31/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? HYPOTHESIS I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign" intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates early in life to form a multi-layer intimal hyperplasia and then continues to self-renew in a controlled manner throughout life, relatively rarely compromising the blood supply to the heart, causing complications requiring intervention only in a small fraction of the population, while all humans are carriers of benign hyperplasia. Unfortunately, this fundamental fact has not been widely appreciated in arteriosclerosis research and medical education, which continue to operate on the assumption that the normal arterial intima is always an "ideal" single-layer endothelium. As a result, the disease is perceived and studied as a new pathological event caused by new mechanisms. The discovery that normal coronary arteries are morphologically indistinguishable from deadly coronary arteriosclerosis continues to elicit surprise. CONCLUSION Two questions should inform the priorities of our research: (1) what controls switch the single cell-layer intimal phenotype into normal hyperplasia? (2) how is normal (benign) hyperplasia maintained? We would be hard-pressed to gain practical insights without scrutinizing our premises.
Collapse
|
13
|
Onorati F, Forte A, Mastroroberto P, Santè P, Esposito S, Pezzo F, Agozzino L, Cipollaro M, Cascino A, Renzulli A. Hypertension induces compensatory arterial remodeling following arteriotomy. J Surg Res 2007; 143:300-10. [PMID: 17714733 DOI: 10.1016/j.jss.2006.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hypertension has been traditionally considered a risk factor for restenosis following carotid arteriotomy. Genetic and morphological response to carotid arteriotomy in normotensive Wystar-Kyoto (WKY), spontaneously hypertensive (SHR), and Milan hypertensive (MHS) rats were analyzed. MATERIAL AND METHODS C-myc, angiotensin II receptor-1 (AT1), angiotensin II receptor-2 (AT2), endothelin-1 receptor A (ET(A)), endothelin-1 receptor B (ET(B)), Bcl-2 family-members (Bcl-2/Bax, Bcl-X(L/S)) were analyzed in surgically injured as well as uninjured carotids of WKY and hypertensive strains (HS). Thirty-day histology and morphometry were accomplished on injured and uninjured carotids. RESULTS C-myc mRNA is activated earlier and/or to a greater extent in hypertensive strains than in WKY. AT1 mRNA increases in WKY after injury, while it decreases in SHR and MHS. AT2 shows the opposite, decreasing in WKY and increasing in hypertensive strains. ET(A) mRNA decreases in all strains although with different timing and levels, associated with a replacement by ET(B) mRNA. Bcl-2/Bax ratio gradually decreases in WKY, while it shows only a transient decrease in SHR and MHS 4 h after the injury. Negative remodeling is observed in all injured carotids, although neointima was detected in WKY only. Thirty days following arteriotomy, morphometry demonstrated a significant decrease of luminal area, with consistent gain in the medial area in WKY, whereas hypertensive strains showed significant increase of the luminal area, consistent with a contemporary decrease of the medial area. CONCLUSIONS Vaso-relaxant AT2 and ET(B) induced limited vasoconstriction in HS. Less apoptosis in hypertensive rats reduced cell proliferation, contrasting c-myc. These responses favorably modulated media/lumen area ratio following arteriotomy in HS.
Collapse
Affiliation(s)
- Francesco Onorati
- Cardiac Surgery Unit Magna Graecia University of Catanzaro, Cantanzaro, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Darsaut T, Salazkin I, Ogoudikpe C, Gevry G, Bouzeghrane F, Raymond J. Effects of stenting the parent artery on aneurysm filling and gene expression of various potential factors involved in healing of experimental aneurysms. Interv Neuroradiol 2007; 12:289-302. [PMID: 20569585 DOI: 10.1177/159101990601200401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/15/2006] [Indexed: 11/16/2022] Open
Abstract
SUMMARY Intracranial stents are increasingly used in the endovascular treatment of aneurysms, but very little is known regarding their effect on the cellular and molecular evolution of aneurysms. Bilateral venous pouch lateral wall carotid aneurysms were created in 20 dogs. All dogs then underwent angiography and balloon-expandable stenting of one aneurysm four to six weeks later. Fifteen dogs underwent aneurysm harvesting at one day (n=3), four days (n=4), seven days (n=3), and 14 days (n=5) for mRNA expression analysis, using axial sections taken from the aneurysm neck and fundus for RTPCR amplification of four cytokines or growth factors: TNF-a, TGF-b1, MCP-1, and PDGFBB; two adhesion molecules: VCAM-1 and PECAM-1; five matrix modifying agents; MMP- 2, 9, TIMPs 1, 3, 4, and two cellular markers: CD34 and a-SMA. Five other dogs, sacrificed at 12 weeks, were examined for extent of filling of the aneurysm neck with organized tissue and for neointima formation at the aneurysm ostium. Angiography was performed prior to sacrifice in all animals, and compared with initial studies. Eleven out of 20 stented aneurysms showed a favorable angiographic evolution, while none of the 20 nonstented aneurysms improved (p=0.001). Pathology showed partially occluded aneurysms, with neointima formation around the stent struts.Observed trends in mRNA expression, that stenting increased expression of genes involved in organization and neointima formation, agreed with experimental hypotheses, but differences between stented and non-stented aneurysms did not reach statistical significance. Parent vessel stenting was associated with angiographic improvement of aneurysm appearance. Modifications in mRNA expression patterns following stenting deserve further study to better establish potential molecular targets to promote aneurysm healing.
Collapse
Affiliation(s)
- T Darsaut
- Research Centre, Notre-Dame Hospital, Montreal, Canada - Department of Surgery, Division of Neurosurgery, University of Alberta, Edmonton, Canada -
| | | | | | | | | | | |
Collapse
|
15
|
Milkiewicz M, Kelland C, Colgan S, Haas TL. Nitric oxide and p38 MAP kinase mediate shear stress-dependent inhibition of MMP-2 production in microvascular endothelial cells. J Cell Physiol 2006; 208:229-37. [PMID: 16575906 DOI: 10.1002/jcp.20658] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic exposure of the skeletal muscle microcirculation to elevated shear stress-induces angiogenesis. Previous studies observed that shear stress-induced capillary growth involves luminal sprouting, or internal division, of the capillaries, which is characterized by a minimal proliferative response and the retention of an intact basement membrane. Matrix metalloproteinases (MMPs) are associated with the process of abluminal sprouting angiogenesis, but may not be required for the process of luminal division during capillary growth. We analyzed the production of MMP-2, using both the in vivo model of prazosin-induced angiogenesis in rat skeletal muscle, and cultured microvascular endothelial cells exposed to laminar shear stress. We found that MMP-2 was not elevated in capillaries of shear stress-stimulated skeletal muscle, despite a significant increase in capillary number in response to a shear stress stimulus. In cultured microvascular endothelial cells, MMP-2 mRNA and protein levels were attenuated significantly in response to shear stress exposure. This effect on MMP-2 was reversed by nitric oxide (NO) synthase inhibition using LNNA. In contrast, exposure of static cultures of endothelial cells to NO donors significantly reduced MMP-2 production. Shear stress exposure and NO donors both modified phosphorylation levels of several members of the MAPK family. Treatment of shear stress-exposed cells with the p38 MAPK inhibitor, SB203580, abolished the shear stress-mediated reduction in MMP-2 mRNA. Thus, our data provide strong evidence that elevated shear stress inhibits MMP-2 production in microvascular endothelial cells, an effect that is mediated by signal pathways involving both production of NO and activation of p38 MAPK.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Endothelial Cells/physiology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Imidazoles/pharmacology
- Male
- Matrix Metalloproteinase 2/analysis
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Neovascularization, Physiologic/drug effects
- Nitric Acid/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitroarginine/pharmacology
- Phosphorylation
- Prazosin/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Mechanical
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Malgorzata Milkiewicz
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|