1
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
2
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
3
|
Li B, Yang X, Zhang P, Guo J, Rong K, Wang X, Cao X, Zhou T, Zhao J. Engeletin Alleviates the Inflammation and Apoptosis in Intervertebral Disc Degeneration via Inhibiting the NF-κB and MAPK Pathways. J Inflamm Res 2022; 15:5767-5783. [PMID: 36238766 PMCID: PMC9553281 DOI: 10.2147/jir.s371809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Low back pain (LBP) induced by intervertebral disc degeneration (IDD) brings progressively painful status and impairs the normal daily living. Engeletin is a plant-derived medicine with anti-inflammation and antioxidant functions. Therefore, we aim to confirm its protective effects against the intervertebral disc degeneration in vivo and in vitro. Methods The cytotoxicity of engeletin was validated by CCK-8 tests. Using the TNF-α to simulate the inflammation status in vitro, the expression of inflammatory mediators and MMP families were determined by qPCR, Western blotting and confocal microscopy. Cell apoptosis was analyzed by flow cytometry and TUNEL assay. The expression of apoptosis-related proteins was tested by Western blotting. The activation of NF-κB and MAPK pathways was evaluated by Western blotting and confocal microscopy. In vivo, percutaneous needle puncture was used to establish the IDD model in rat, and engeletin was administrated via intradiscal injection. The therapeutic effects of engeletin were detected through imaging and histology analysis. Results Cell viability tests demonstrated there was little cytotoxicity of engeletin toward NP cells. Pretreatment with engeletin effectively ameliorate the TNF-α-induced up-regulation of inflammatory mediators and MMP families, promoting the anabolism of ECM meanwhile. Cell apoptosis was also attenuated with the addition of engeletin. We found that the activation of MAPK and NF-κB signaling pathways and the nuclear translocation of phosphorylated p65 and p38 were inhibited prominently with the treatment of engeletin which may be the potential molecular mechanism for its anti-inflammation effects. Finally, the IDD induced by percutaneous needle puncture was partially alleviated with the injection of engeletin in vivo. Conclusion As a natural compound with little cytotoxicity, engeletin possesses the outstanding anti-inflammation and anti-apoptosis effects in the process of IDD in vitro and in vivo, which may be a promising medicine for the prevention and treatment of IDD-related low back pain.
Collapse
Affiliation(s)
- Baixing Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Jiadong Guo
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China,Correspondence: Tangjun Zhou; Jie Zhao, Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China, Tel +8621-23271159, Fax +8621-63139920, Email ;
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
4
|
Lv B, Gan W, Cheng Z, Wu J, Chen Y, Zhao K, Zhang Y. Current Insights Into the Maintenance of Structure and Function of Intervertebral Disc: A Review of the Regulatory Role of Growth and Differentiation Factor-5. Front Pharmacol 2022; 13:842525. [PMID: 35754493 PMCID: PMC9213660 DOI: 10.3389/fphar.2022.842525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Intervertebral disc degeneration (IDD), characterized by conversion of genotypic and phenotypic, is a major etiology of low back pain and disability. In general, this process starts with alteration of metabolic homeostasis leading to ongoing inflammatory process, extracellular matrix degradation and fibrosis, diminished tissue hydration, and impaired structural and mechanical functionality. During the past decades, extensive studies have focused on elucidating the molecular mechanisms of degeneration and shed light on the protective roles of various factors that may have the ability to halt and even reverse the IDD. Mutations of GDF-5 are associated with several human and animal diseases that are characterized by skeletal deformity such as short digits and short limbs. Growth and differentiation factor-5 (GDF-5) has been shown to be a promise biological therapy for IDD. Substantial literature has revealed that GDF-5 can decelerate the progression of IDD on the molecular, cellular, and organ level by altering prolonged imbalance between anabolism and catabolism. GDF family members are the central signaling moleculars in homeostasis of IVD and upregulation of their gene promotes the expression of healthy nucleus pulposus (NP) cell marker genes. In addition, GDF signaling is able to induce mesenchymal stem cells (MSCs) to differentiate into NPCs and mobilize resident cell populations as chemotactic signals. This review will discuss the promising critical role of GDF-5 in maintenance of structure and function of IVDs, and its therapeutic role in IDD endogenous repair.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weikang Gan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Hodgkinson T, Gilbert HTJ, Pandya T, Diwan AD, Hoyland JA, Richardson SM. Regenerative Response of Degenerate Human Nucleus Pulposus Cells to GDF6 Stimulation. Int J Mol Sci 2020; 21:E7143. [PMID: 32992671 PMCID: PMC7582366 DOI: 10.3390/ijms21197143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor (GDF) family members have been implicated in the development and maintenance of healthy nucleus pulposus (NP) tissue, making them promising therapeutic candidates for treatment of intervertebral disc (IVD) degeneration and associated back pain. GDF6 has been shown to promote discogenic differentiation of mesenchymal stem cells, but its effect on NP cells remains largely unknown. Our aim was to investigate GDF6 signalling in adult human NP cells derived from degenerate tissue and determine the signal transduction pathways critical for GDF6-mediated phenotypic changes and tissue homeostatic mechanisms. This study demonstrates maintained expression of GDF6 receptors in human NP and annulus fibrosus (AF) cells across a range of degeneration grades at gene and protein level. We observed an anabolic response in NP cells treated with recombinant GDF6 (increased expression of matrix and NP-phenotypic markers; increased glycosaminoglycan production; no change in catabolic enzyme expression), and identified the signalling pathways involved in these responses (SMAD1/5/8 and ERK1/2 phosphorylation, validated by blocking studies). These findings suggest that GDF6 promotes a healthy disc tissue phenotype in degenerate NP cells through SMAD-dependent and -independent (ERK1/2) mechanisms, which is important for development of GDF6 therapeutic strategies for treatment of degenerate discs.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (T.H.); (H.T.J.G.); (T.P.); (J.A.H.)
| | - Hamish T. J. Gilbert
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (T.H.); (H.T.J.G.); (T.P.); (J.A.H.)
| | - Tej Pandya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (T.H.); (H.T.J.G.); (T.P.); (J.A.H.)
| | - Ashish D. Diwan
- St George & Sutherland Clinical School, University of New South Wales, Sydney, NSW 2217, Australia;
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (T.H.); (H.T.J.G.); (T.P.); (J.A.H.)
- NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (T.H.); (H.T.J.G.); (T.P.); (J.A.H.)
| |
Collapse
|
6
|
Ciardulli MC, Marino L, Lamparelli EP, Guida M, Forsyth NR, Selleri C, Della Porta G, Maffulli N. Dose-Response Tendon-Specific Markers Induction by Growth Differentiation Factor-5 in Human Bone Marrow and Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:E5905. [PMID: 32824547 PMCID: PMC7460605 DOI: 10.3390/ijms21165905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells derived from human bone marrow (hBM-MSCs) are utilized in tendon tissue-engineering protocols while extra-embryonic cord-derived, including from Wharton's Jelly (hWJ-MSCs), are emerging as useful alternatives. To explore the tenogenic responsiveness of hBM-MSCs and hWJ-MSCs to human Growth Differentiation Factor 5 (hGDF-5) we supplemented each at doses of 1, 10, and 100 ng/mL of hGDF-5 and determined proliferation, morphology and time-dependent expression of tenogenic markers. We evaluated the expression of collagen types 1 (COL1A1) and 3 (COL3A1), Decorin (DCN), Scleraxis-A (SCX-A), Tenascin-C (TNC) and Tenomodulin (TNMD) noting the earliest and largest increase with 100 ng/mL. With 100 ng/mL, hBM-MSCs showed up-regulation of SCX-A (1.7-fold) at Day 1, TNC (1.3-fold) and TNMD (12-fold) at Day 8. hWJ-MSCs, at the same dose, showed up-regulation of COL1A1 (3-fold), DCN (2.7-fold), SCX-A (3.8-fold) and TNC (2.3-fold) after three days of culture. hWJ-MSCs also showed larger proliferation rate and marked aggregation into a tubular-shaped system at Day 7 (with 100 ng/mL of hGDF-5). Simultaneous to this, we explored the expression of pro-inflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokines across for both cell types. hBM-MSCs exhibited a better balance of pro-inflammatory and anti-inflammatory cytokines up-regulating IL-1β (11-fold) and IL-10 (10-fold) at Day 8; hWJ-MSCs, had a slight expression of IL-12A (1.5-fold), but a greater up-regulation of IL-10 (2.5-fold). Type 1 collagen and tenomodulin proteins, detected by immunofluorescence, confirming the greater protein expression when 100 ng/mL were supplemented. In the same conditions, both cell types showed specific alignment and shape modification with a length/width ratio increase, suggesting their response in activating tenogenic commitment events, and they both potential use in 3D in vitro tissue-engineering protocols.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Luigi Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Maurizio Guida
- Department of Neuroscience and Reproductive Science and Dentistry, University of Naples “Federico II”, Via Pansini, 5, 80131 Naples, Italy;
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK;
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
- Mile End Hospital, Centre for Sports and Exercise Medicine, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
7
|
Ciardulli MC, Marino L, Lovecchio J, Giordano E, Forsyth NR, Selleri C, Maffulli N, Porta GD. Tendon and Cytokine Marker Expression by Human Bone Marrow Mesenchymal Stem Cells in a Hyaluronate/Poly-Lactic-Co-Glycolic Acid (PLGA)/Fibrin Three-Dimensional (3D) Scaffold. Cells 2020; 9:E1268. [PMID: 32443833 PMCID: PMC7291129 DOI: 10.3390/cells9051268] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023] Open
Abstract
We developed a (three-dimensional) 3D scaffold, we named HY-FIB, incorporating a force-transmission band of braided hyaluronate embedded in a cell localizing fibrin hydrogel and poly-lactic-co-glycolic acid (PLGA) nanocarriers as transient components for growth factor controlled delivery. The tenogenic supporting capacity of HY-FIB on human-Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) was explored under static conditions and under bioreactor-induced cyclic strain conditions. HY-FIB elasticity enabled to deliver a mean shear stress of 0.09 Pa for 4 h/day. Tendon and cytokine marker expression by hBM-MSCs were studied. Results: hBM-MSCs embedded in HY-FIB and subjected to mechanical stimulation, resulted in a typical tenogenic phenotype, as indicated by type 1 Collagen fiber immunofluorescence. RT-qPCR showed an increase of type 1 Collagen, scleraxis, and decorin gene expression (3-fold, 1600-fold, and 3-fold, respectively, at day 11) in dynamic conditions. Cells also showed pro-inflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokine gene expressions, with a significant increase of anti-inflammatory cytokines in dynamic conditions (IL-10 and TGF-β1 300-fold and 4-fold, respectively, at day 11). Mechanical signaling, conveyed by HY-FIB to hBM-MSCs, promoted tenogenic gene markers expression and a pro-repair cytokine balance. The results provide strong evidence in support of the HY-FIB system and its interaction with cells and its potential for use as a predictive in vitro model.
Collapse
Affiliation(s)
- Maria C. Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Luigi Marino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena (FC), Italy; (J.L.); (E.G.)
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena (FC), Italy; (J.L.); (E.G.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
- Centre for Sport and Exercise Medicine, Queen Mary University of London, Barts and The London School of Medicine, London E1 4NL, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (L.M.); (C.S.); (N.M.)
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
| |
Collapse
|
8
|
Frapin L, Clouet J, Delplace V, Fusellier M, Guicheux J, Le Visage C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev 2019; 149-150:49-71. [PMID: 31445063 DOI: 10.1016/j.addr.2019.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Intervertebral disc (IVD) degeneration has been associated with low back pain, which is a major musculoskeletal disorder and socio-economic problem that affects as many as 600 million patients worldwide. Here, we first review the current knowledge of IVD physiology and physiopathological processes in terms of homeostasis regulation and consecutive events that lead to tissue degeneration. Recent progress with IVD restoration by anti-catabolic or pro-anabolic approaches are then analyzed, as are the design of macro-, micro-, and nano-platforms to control the delivery of such therapeutic agents. Finally, we hypothesize that a sequential delivery strategy that i) firstly targets the inflammatory, pro-catabolic microenvironment with release of anti-inflammatory or anti-catabolic cytokines; ii) secondly increases cell density in the less hostile microenvironment by endogenous cell recruitment or exogenous cell injection, and finally iii) enhances cellular synthesis of extracellular matrix with release of pro-anabolic factors, would constitute an innovative yet challenging approach to IVD regeneration.
Collapse
|
9
|
Hodgkinson T, Shen B, Diwan A, Hoyland JA, Richardson SM. Therapeutic potential of growth differentiation factors in the treatment of degenerative disc diseases. JOR Spine 2019; 2:e1045. [PMID: 31463459 PMCID: PMC6686806 DOI: 10.1002/jsp2.1045] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a major contributing factor to chronic low back pain and disability, leading to imbalance between anabolic and catabolic processes, altered extracellular matrix composition, loss of tissue hydration, inflammation, and impaired mechanical functionality. Current treatments aim to manage symptoms rather than treat underlying pathology. Therefore, IVD degeneration is a target for regenerative medicine strategies. Research has focused on understanding the molecular process of degeneration and the identification of various factors that may have the ability to halt and even reverse the degenerative process. One such family of growth factors, the growth differentiation factor (GDF) family, have shown particular promise for disc regeneration in in vitro and in vivo models of IVD degeneration. This review outlines our current understanding of IVD degeneration, and in this context, aims to discuss recent advancements in the use of GDF family members as anabolic factors for disc regeneration. An increasing body of evidence indicates that GDF family members are central to IVD homeostatic processes and are able to upregulate healthy nucleus pulposus cell marker genes in degenerative cells, induce mesenchymal stem cells to differentiate into nucleus pulposus cells and even act as chemotactic signals mobilizing resident cell populations during disc injury repair. The understanding of GDF signaling and its interplay with inflammatory and catabolic processes may be critical for the future development of effective IVD regeneration therapies.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Bojiang Shen
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ashish Diwan
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation TrustManchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
10
|
Jia Z, Zhang Y, Su Y, Wang X, Yu J, Yuan Q, Liu L. CDMP1 overexpression mediates inflammatory cytokine‑induced apoptosis via inhibiting the Wnt/β‑Catenin pathway in rat dorsal root ganglia neurons. Int J Mol Med 2018; 42:1247-1256. [PMID: 29901085 PMCID: PMC6089779 DOI: 10.3892/ijmm.2018.3716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
Cartilage‑derived morphogenetic protein‑1 (CDMP1) is a polypeptide growth factor with specific cartilage inducibility, which is predominantly expressed in the developmental long bone cartilage core and in the pre‑cartilage matrix in the embryonic stage. The aim of the present study was to investigate the roles and the mechanisms of CDMP1 overexpression on the apoptosis of rat dorsal root ganglia (DRG) neurons that were induced by inflammatory cytokines. Cell counting Kit‑8 assay, flow cytometry and TdT‑mediated dUTP nick‑end labeling assay were performed to examine cell viability and apoptosis. ELISA, hematoxylin and eosin staining and immunohistochemistry assays were performed to examine the levels of several factors in DRG tissues. Western blot analysis and reverse transcription‑quantitative polymerase chain reaction assays were used to determine the mRNA and protein expression levels, respectively. The results demonstrated that CDMP1 expression was downregulated, while inflammatory cytokine expression was upregulated in DRG tissues derived from lumbar disc herniation (LDH) model rats. In addition, DRG cells from LDH rats exhibited increased apoptosis compared with control rats. CDMP1 overexpression enhanced the cell viability of inflammatory cytokine‑induced DRG cells, and suppressed the apoptosis of inflammatory cytokine‑induced DRG cells via regulating the expression levels of Caspase‑3/8/9, BCL2 apoptosis regulator, and BCL2 associated X. Furthermore, CDMP1 overexpression was demonstrated to affect the Wnt/β‑Catenin pathway in the inflammatory cytokine‑induced DRG cells. In conclusion, the present findings suggested that CDMP1 overexpression mediated inflammatory cytokine‑induced apoptosis via Wnt/β‑Catenin signaling in rat DRG cells.
Collapse
Affiliation(s)
- Zhongwei Jia
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yunxing Su
- Department of Orthopedics, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Xiaojian Wang
- Department of Orthopedics, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Jianping Yu
- Department of Orthopedics, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Qiling Yuan
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Liu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Kennon JC, Awad ME, Chutkan N, DeVine J, Fulzele S. Current insights on use of growth factors as therapy for Intervertebral Disc Degeneration. Biomol Concepts 2018; 9:43-52. [PMID: 29779014 DOI: 10.1515/bmc-2018-0003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/23/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic low back pain is a critical health problem and a leading cause of disability in aging populations. A major cause of low back pain is considered to be the degeneration of the intervertebral disc (IVD). Recent advances in therapeutics, particularly cell and tissue engineering, offer potential methods for inhibiting or reversing IVD degeneration, which have previously been impossible. The use of growth factors is under serious consideration as a potential therapy to enhance IVD tissue regeneration. We reviewed the role of chosen prototypical growth factors and growth factor combinations that have the capacity to improve IVD restoration. A number of growth factors have demonstrated potential to modulate the anabolic and anticatabolic effects in both in vitro and animal studies of IVD tissue engineering. Members of the transforming growth factor-β superfamily, IGF-1, GDF-5, BMP-2, BMP-7, and platelet-derived growth factor have all been investigated as possible therapeutic options for IVD regeneration. The role of growth factors in IVD tissue engineering appears promising; however, further extensive research is needed at both basic science and clinical levels before its application is appropriate for clinical use.
Collapse
Affiliation(s)
- Justin C Kennon
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA
| | - Mohamed E Awad
- Department of Oral Biology, Augusta University, Augusta, GA, USA
| | - Norman Chutkan
- Banner University Medical Center, University of Arizona College of Medicine - Phoenix, The CORE Institute, Phoenix, AZ, USA
| | - John DeVine
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.,Institute of Regenerative and Reparative Medicine, Augusta University, Augusta, GA, USA
| |
Collapse
|
12
|
Henry N, Clouet J, Le Bideau J, Le Visage C, Guicheux J. Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems. Biotechnol Adv 2017; 36:281-294. [PMID: 29199133 DOI: 10.1016/j.biotechadv.2017.11.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
As our understanding of the physiopathology of intervertebral disc (IVD) degeneration has improved, novel therapeutic strategies have emerged, based on the local injection of cells, bioactive molecules, and nucleic acids. However, with regard to the harsh environment constituted by degenerated IVDs, protecting biologics from in situ degradation while allowing their long-term delivery is a major challenge. Yet, the design of the optimal approach for IVD regeneration is still under debate and only a few papers provide a critical assessment of IVD-specific carriers for local and sustained delivery of biologics. In this review, we highlight the IVD-relevant polymers as well as their design as macro-, micro-, and nano-sized particles to promote endogenous repair. Finally, we illustrate how multiscale systems, combining in situ-forming hydrogels with ready-to-use particles, might drive IVD regenerative medicine strategies toward innovation.
Collapse
Affiliation(s)
- Nina Henry
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, France
| | - Jean Le Bideau
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3, France
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France.
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU 4 OTONN, Nantes, France.
| |
Collapse
|
13
|
Leung VYL, Zhou L, Tam WK, Sun Y, Lv F, Zhou G, Cheung KMC. Bone morphogenetic protein-2 and -7 mediate the anabolic function of nucleus pulposus cells with discrete mechanisms. Connect Tissue Res 2017; 58:573-585. [PMID: 28102712 DOI: 10.1080/03008207.2017.1282951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins (BMPs) play roles in promoting cell anabolism, especially in extracellular matrix production. The difference between BMP members in their capacity to modulate intervertebral disc cell activity is yet to be defined. BMP-7/OP-1 has been shown to retard disc degeneration. We compared the activity of BMP-7 with that of BMP-2 on nucleus pulposus (NP) cell phenotype and function, and investigated how they differentially affect the gene expression profiles of signaling cascade components in human NP cells under degenerative states. We found that while both BMP-2 and BMP-7 enhanced matrix production of bovine NP cells, BMP-7 is more potent than BMP-2 at various dosages (50-800 ng/ml). BMP-7 exerted a relatively stronger stimulation on sulfated glycosaminoglycan production and proliferation in human NP cells. Degenerated NP cells showed an overall weaker response to the BMPs than non-degenerated cells, and were more sensitive to BMP-7 than BMP-2 stimulation. Compared to BMP-2, BMP-7 not only induced the gene expression of canonical BMP components, but also evoked changes in MAPKs as well as CREB1 and EP300 gene expression in degenerated NP cells, suggesting potential activation of the cAMP dependent protein kinase related pathways. In contrast to BMP-2, BMP-7 concomitantly inhibited the expression of profibrotic genes. We propose that BMP-2 and BMP-7, and likely other BMPs, may operate multifaceted but discrete molecular machineries that give rise to their different capacity in regulating NP cell phenotype. Further investigations into such differential capacity may possibly derive alternative cues important for IVD repair or engineering.
Collapse
Affiliation(s)
- Victor Y L Leung
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Lixiong Zhou
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Wai-Kit Tam
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Yi Sun
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Fengjuan Lv
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Guangqian Zhou
- b School of Medicine , Shenzhen University , Shenzhen , China
| | - Kenneth M C Cheung
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| |
Collapse
|
14
|
Liu W, Zhang Y, Xia P, Li S, Feng X, Gao Y, Wang K, Song Y, Duan Z, Yang S, Shao Z, Yang C. MicroRNA-7 regulates IL-1β-induced extracellular matrix degeneration by targeting GDF5 in human nucleus pulposus cells. Biomed Pharmacother 2016; 83:1414-1421. [DOI: 10.1016/j.biopha.2016.08.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/01/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022] Open
|
15
|
Gruber HE, Riley FE, Hoelscher GL, Ingram JA, Bullock L, Hanley EN. Human annulus progenitor cells: Analyses of this viable endogenous cell population. J Orthop Res 2016; 34:1351-60. [PMID: 27249627 DOI: 10.1002/jor.23319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/27/2016] [Indexed: 02/04/2023]
Abstract
Back pain and intervertebral disc degeneration have growing socioeconomic/health care impacts. Increasing research efforts address use of stem and progenitor cell-based replacement therapies to repopulate and regenerate the disc. Data presented here on the innate human annulus progenitor cells: (i) assessed osteogenic, chondrogenic and adipogenic potentials of cultured human annulus cells; and (ii) defined progenitor-cell related gene expression patterns. Verification of the presence of progenitor cells within primary human disc tissue also used immunohistochemical identification of cell surface markers and microarray analyses. Differentiation analysis in cell cultures demonstrated a viable progenitor cell pool within Thompson grades III-IV discs. Osteogenesis was present in 8 out of 11 cultures (73%), chondrogenesis in 8 of 11 (73%), and adipogenesis in 6 of 6 (100%). Immunolocalization was positive for CD29, CD44, CD105, and CD14 (mean values 80.2%, 81.5%, 85.1%, and 88.6%, respectively); localization of CD45 and CD34 was negative in disc tissue. Compared to controls, surgical discs showed significantly downregulated genes with recognized progenitor cell functions: TCF7L2 (2.7 fold), BMI1 (3.8 fold), FGF receptor 2 (2 fold), PAFAH1B1 (2.3 fold), and GSTP1 (9 fold). Compared to healthier grade I/II discs, grade III/IV discs showed significantly upregulated XRCC5 (3.6 fold), TCF7L2 (6 fold), GSTP1 (3.7 fold), and BMI1 (3 fold). Additional significant cell marker analyses showed expression of platelet-derived growth factor receptor alpha, CD90, CD73, and STRO-1. Statement of Clinical Significance: Findings provide the first identification of progenitor cells in annulus specimens from older, more degenerate discs (in contrast to earlier studies of healthier discs or nondegenerative specimens from teenagers). Findings also increase knowledge on progenitor cells present in the disc and suggest their value in potential future utilization for regeneration and disc cell therapy. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1351-1360, 2016.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Calorina, 20226
| | - Frank E Riley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Calorina, 20226
| | - Gretchen L Hoelscher
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Calorina, 20226
| | - Jane A Ingram
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Calorina, 20226
| | - Letitia Bullock
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Calorina, 20226
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Calorina, 20226
| |
Collapse
|
16
|
Liu W, Zhang Y, Feng X, Li S, Gao Y, Wang K, Song Y, Yang S, Tu J, Shao Z, Yang C. Inhibition of microRNA-34a prevents IL-1β-induced extracellular matrix degradation in nucleus pulposus by increasing GDF5 expression. Exp Biol Med (Maywood) 2016; 241:1924-1932. [PMID: 27385596 DOI: 10.1177/1535370216657444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence indicates that miRNAs, a class of small non-coding RNAs, are implicated in the pathogenesis of various diseases such as cancer and intervertebral disc degeneration. The aim of this study was to investigate the expression and the biological function of microRNA-34a in intervertebral disc degeneration. In this study, microRNA-34a expression was assessed in nucleus pulposus specimens and in IL-1β-stimulated nucleus pulposus cells by real-time polymerase chain reaction. microRNA-34a functions were investigated by using gain and loss of function experiments in nucleus pulposus cells and a dual luciferase reporter assay in 293T cells. microRNA-34a was dramatically up-regulated in degenerative nucleus pulposus tissues and in IL-1β-stimulated nucleus pulposus cells when compared with controls. Furthermore, growth differentiation factor 5 was identified as a target of microRNA-34a. Aberrant expression of microRNA-34a inhibited growth differentiation factor 5 expression by direct binding to its 3'-untranslated region. This inhibition was abolished by mutation of the microRNA-34a binding sites. In addition, microRNA-34a silencing reversed IL-1β-induced decrease in type II collagen and aggrecan expression in nucleus pulposus cells. This effect was substantially suppressed by growth differentiation factor 5 silencing. Our results suggested that microRNA-34a inhibition prevents IL-1β-induced extracellular matrix degradation in human nucleus pulposus by increasing growth differentiation factor 5 expression. microRNA-34a inhibition may be a novel molecular target for intervertebral disc degeneration treatment through the prevention of nucleus pulposus extracellular matrix degradation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Xintong Feng
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Yong Gao
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Yu Song
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Shuhua Yang
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Ji Tu
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Union Hospital, Wuhan 430022, China
| |
Collapse
|
17
|
Henriksson HB, Papadimitriou N, Tschernitz S, Svala E, Skioldebrand E, Windahl S, Junevik K, Brisby H. Indications of that migration of stem cells is influenced by the extra cellular matrix architecture in the mammalian intervertebral disk region. Tissue Cell 2015; 47:439-55. [DOI: 10.1016/j.tice.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
|
18
|
Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics. Curr Rev Musculoskelet Med 2015; 8:18-31. [PMID: 25694233 DOI: 10.1007/s12178-014-9253-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.
Collapse
|