1
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
2
|
Hu D, Shao W, Liu L, Wang Y, Yuan S, Liu Z, Liu J, Zhang J. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int 2021; 21:653. [PMID: 34876130 PMCID: PMC8650324 DOI: 10.1186/s12935-021-02362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
MYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, therefore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulating MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resistance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence and development of cancer.
Collapse
Affiliation(s)
- Dingyu Hu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjun Shao
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yanyan Wang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunling Yuan
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
3
|
Dasatinib reverses drug resistance by downregulating MDR1 and Survivin in Burkitt lymphoma cells. BMC Complement Med Ther 2020; 20:84. [PMID: 32171300 PMCID: PMC7076888 DOI: 10.1186/s12906-020-2879-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background Current chemotherapies for Burkitt lymphoma (BL) have dramatically improved its clinical outcome. However, chemoresistance can lead to chemotherapy failure and very poor prognosis; thus, novel strategies are urgently required for patients with drug-resistant BL. To investigate the mechanisms underlying drug resistance in BL, we established drug-resistant BL cell lines: HS-Sultan/ADM (adriamycin-resistant), HS-Sultan/VCR (vincristine-resistant), HS-Sultan/DEX (dexamethasone-resistant), and HS-Sultan/L-PAM (melphalan-resistant). Methods Drug transporter and survival factor expression were investigated the using western blotting and real time polymerase chain reaction. Cell survival was analyzed by trypan blue dye exclusion method. Results The established cell lines acquired cross-resistance to adriamycin, vincristine, dexamethasone, and melphalan and exhibited 50% inhibitory concentration values 106-, 40-, 81-, and 45-fold higher than the parental cell lines, respectively. We found that protein and mRNA expression of MDR1 and Survivin were higher in drug-resistant BL cells than in the parent cells. Treatment with verapamil, an MDR1 inhibitor, or Survivin siRNA alongside each anti-cancer drug suppressed the proliferation of all drug-resistant BL cells. Src kinase activity was higher in all resistant cell lines than the parental cells; suppressing Src with dasatinib restored drug sensitivity by reducing MDR1 and Survivin expression. Conclusions MDR1 and Survivin upregulation are responsible for resistance to conventional drugs and dasatinib can restore drug sensitivity by reducing MDR1 and Survivin expression in drug-resistant BL cells. Src inhibitors could therefore be a novel treatment strategy for patients with drug resistant BL.
Collapse
|
4
|
Wang X, Kan Y, Chen L, Ge P, Ding T, Zhai Q, Yu Y, Wang X, Zhao Z, Yang H, Liu X, Li L, Qiu L, Qian Z, Zhang H, Wang Y, Zhao H. miR-150 is a negative independent prognostic biomarker for primary gastrointestinal diffuse large B-cell lymphoma. Oncol Lett 2020; 19:3487-3494. [PMID: 32269622 PMCID: PMC7115130 DOI: 10.3892/ol.2020.11452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
A number of studies suggest an association between miRNAs and diffuse large B-cell lymphoma (DLBCL). The present study aimed to investigate the prognostic value of microRNA (miR-150) in primary gastrointestinal (PGI)-DLBCL, by assessing the association between miR-150 expression and clinicopathological characteristics in patients with PGI-DLBCL. A total of 84 patients diagnosed with PGI-DLBCL were recruited and both tumor and adjacent non-tumor tissue samples were collected. miR-150 expression was assessed via reverse transcription-quantitative (RT-q)PCR analysis. The results demonstrated that miR-150 expression was significantly lower in PGI-DLBCL tissues compared with adjacent non-tumor tissues. Furthermore, receiver operating characteristic (ROC) curve analysis indicated that the optimal cut-off value of miR-150 for predicting survival was 8.965 with high sensitivity (79.8%) and specificity (77.1%). Patients were divided into two groups according to this cut-off value, as follows: High (n=18) and low expression (n=66) groups. Low miR-150 expression was significantly associated with clinical stage, International Prognostic Index (IPI), Eastern Cooperative Oncology Group status and use of rituximab. RT-qPCR analysis demonstrated that miR-150 expression was significantly lower in patients with high IPI scores compared with patients with low IPI scores. Downregulated miR-150 expression was significantly associated with shorter overall survival (OS) time and progression-free survival (PFS) time in patients with PGI-DLBCL. Furthermore, miR-150 level and IPI score were identified as two risk factors for OS and PFS. The diagnostic value of miR-150 was evaluated via ROC curve analysis, with an area under the curve value of 0.882. Taken together, the results of the present study suggest that miR-150 is a potential diagnostic marker of PGI-DLBCL, and may also serve as a useful prognostic factor for survival outcomes in patients with PGI-DLBCL.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yutian Kan
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Leiyuan Chen
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Peng Ge
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Tingting Ding
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Qiongli Zhai
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yong Yu
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaofang Wang
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Zhigang Zhao
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Hongliang Yang
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xianming Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yafei Wang
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Haifeng Zhao
- Department of Hematology and Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
5
|
Lee JH, Choi YS, Park JH, Kim H, Lee I, Won YB, Yun BH, Park JH, Seo SK, Lee BS, Cho S. MiR-150-5p May Contribute to Pathogenesis of Human Leiomyoma via Regulation of the Akt/p27 Kip1 Pathway In Vitro. Int J Mol Sci 2019; 20:ijms20112684. [PMID: 31159158 PMCID: PMC6601023 DOI: 10.3390/ijms20112684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Uterine leiomyoma is found in ~50–80% of women of a reproductive age and is the most common reason for hysterectomy. Recently, posttranscriptional gene silencing by microRNAs (miRs) has been reported as a mechanism for regulating gene expression stability in the pathogenesis of uterine leiomyomas. In this study, miR microarray analysis of leiomyomas and paired myometrial tissue revealed numerous aberrantly expressed miRs, including miR-150. In functional assays, transfection with miR-150 mimic resulted in decreased migration and fibrosis, implying an inhibition of leiomyoma growth. To identify the target genes of miR-150 in leiomyoma, gene set analysis and network analysis were performed. To overcome the limitations of in silico analysis, changes in expression levels of hallmark genes in leiomyoma after transfection with a miR-150 mimic were also evaluated using qRT-PCR. As a result, the Akt/p27Kip1 pathway was presumed to be one of the target pathways of miR-150. After transfecting cultured leiomyoma cells with the miR-150 mimic, expression levels of its target gene Akt decreased, whereas those of p27Kip1 increased significantly. Our results suggest that miR-150 affects the cell cycle regulation in uterine leiomyoma through the Akt/p27Kip1 pathway.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Ji Hyun Park
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea.
| | - Heeyon Kim
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea.
| | - Inha Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Young Bin Won
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Joo Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea.
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - SiHyun Cho
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea.
| |
Collapse
|
6
|
Cai H, Zhang P, Xu M, Yan L, Liu N, Wu X. Circular RNA hsa_circ_0000263 participates in cervical cancer development by regulating target gene of miR-150-5p. J Cell Physiol 2018; 234:11391-11400. [PMID: 30569515 DOI: 10.1002/jcp.27796] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023]
Abstract
Circular RNA (circRNA) is a new class of noncoding RNA, and plays an important role in many pathological processes. Cervical cancer is the most common gynecologic malignant tumor. Recently, studies have shown that there is a variety of circRNA involved in the pathogenesis of cervical cancer. We screened out the highly expressed hsa_circ_0000263 from GSE102686 by the quantitative real-time polymerase chain reaction assay in cervical cancer cell lines. In this study, we investigated whether hsa_circ_0000263 might affect cell proliferation, migration, cell cycle and apoptosis in cervical cancer in vitro and in vivo. The luciferase reporter assay and RNA immunoprecipitation assay confirmed the direct interaction between miR-150-5p and hsa_circ_0000263. By using western blot and immunohistochemistry, we confirmed that hsa_circ_0000263 can regulate the expression of murine double minute 4 (MDM4) by affecting miR-150-5p, and finally affect the expression of p53 gene. We found that hsa_circ_0000263 was significantly upregulated in cervical cancer cells. In addition, the knockdown of hsa_circ_0000263, would inhibit cell proliferation and migration ability. In conclusion, our current research reveals the important role of hsa_circ_0000263/miR-150-5p/MDM4/p53 regulatory network in cervical cancer and provides a new insight into the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Hongning Cai
- Department of Gynecologic Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xu
- Department of Gynecologic Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Lin Yan
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Liu
- Department of Women Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xufeng Wu
- Department of Gynecologic Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
7
|
Chan LS, Man OY, Kwok HH, Chen L, Chan KC, Lung HL, Ngan RKC, Wong RNS, Lo KW, Lee AWM, Tsao GSW, Kahn M, Lung ML, Mak NK. The Wnt modulator ICG‑001 mediates the inhibition of nasopharyngeal carcinoma cell migration in vitro via the miR‑150/CD44 axis. Int J Oncol 2018; 54:1010-1020. [PMID: 30569106 DOI: 10.3892/ijo.2018.4664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/10/2018] [Indexed: 11/05/2022] Open
Abstract
The Wnt signaling pathway is known to serve an important role in the control of cell migration. The present study analyzed the mechanisms underlying the in vitro modulation of the migration of nasopharyngeal carcinoma (NPC) cells by the CREB‑binding protein/catenin antagonist and Wnt modulator ICG‑001. The results revealed that ICG‑001‑mediated inhibition of tumor cell migration involved downregulated mRNA and protein expression of the Wnt target gene cluster of differentiation (CD)44. It was also demonstrated that ICG‑001 downregulated the expression of CD44, and this effect was accompanied by restored expression of microRNA (miRNA)‑150 in various NPC cell lines. Using a CD44 3'‑untranslated region luciferase reporter assay, miR‑150 was confirmed to be a novel CD44‑targeting miRNA, which could directly target CD44 and subsequently regulate the migration of NPC cells. The present study provides further insight into the inhibition of tumor cell migration through the modulation of miRNA expression by the Wnt modulator ICG‑001.
Collapse
Affiliation(s)
- Lai-Sheung Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - On-Ying Man
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Hoi-Hin Kwok
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Luo Chen
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - King-Chi Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Hong-Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Roger Kai-Cheong Ngan
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, P.R. China
| | | | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Anne Wing-Mui Lee
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, P.R. China
| | - George Sai-Wah Tsao
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, P.R. China
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | - Maria Li Lung
- Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, P.R. China
| | - Nai-Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| |
Collapse
|
8
|
Zhang D, Wei Y, Zhou J, Wang G, Xiao L, Xu J, Wei N, Li W, Zhang M. miR‐150 might inhibit cell proliferation and promote cell apoptosis by targeting
LMO4
in Burkitt lymphoma. J Cell Physiol 2018; 234:9652-9662. [DOI: 10.1002/jcp.27652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Dandan Zhang
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yanshuan Wei
- Clinical Laboratory, Henan No. 2 Provincial People’s Hospital Zhengzhou Henan China
| | - Jun Zhou
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Guannan Wang
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Lin Xiao
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Jingjing Xu
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Na Wei
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Wencai Li
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Mingzhi Zhang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
9
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|
10
|
Argonaute 2 RNA Immunoprecipitation Reveals Distinct miRNA Targetomes of Primary Burkitt Lymphoma Tumors and Normal B Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1289-1299. [DOI: 10.1016/j.ajpath.2018.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
|
11
|
Li JG, Ding Y, Huang YM, Chen WL, Pan LL, Li Y, Chen XL, Chen Y, Wang SY, Wu XN. FAMLF is a target of miR-181b in Burkitt lymphoma. ACTA ACUST UNITED AC 2017; 50:e5661. [PMID: 28492808 PMCID: PMC5441277 DOI: 10.1590/1414-431x20175661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Burkitt lymphoma (BL) is a highly malignant non-Hodgkin's lymphoma that is closely
related to the abnormal expression of genes. Familial acute myelogenous leukemia
related factor (FAMLF; GenBank accession No. EF413001.1) is a novel
gene that was cloned by our research group, and miR-181b is located in the intron of
the FAMLF gene. To verify the role of miR-181b and
FAMLF in BL, RNAhybrid software was used to predict target site
of miR-181b on FAMLF and real-time quantitative PCR (RQ-PCR) was
used to detect expression of miR-181b and FAMLF in BL patients, Raji
cells and unaffected individuals. miR-181b was then transfected into Raji and CA46
cell lines and FAMLF expression was examined by RQ-PCR and western
blotting. Further, Raji cells viability and proliferation were detected by MTT and
clone formation, and Raji cell cycle and apoptosis were detected by flow cytometry.
The results showed that miR-181b can bind to bases 21–42 of the
FAMLF 5′ untranslated region (UTR), FAMLF was
highly expressed and miR-181b was lowly expressed in BL patients compared with
unaffected individuals. FAMLF expression was significantly and
inversely correlated to miR-181b expression, and miR-181b negatively regulated
FAMLF at posttranscriptional and translational levels. A
dual-luciferase reporter gene assay identified that the 5′ UTR of
FAMLF mRNA contained putative binding sites for miR-181b.
Down-regulation of FAMLF by miR-181b arrested cell cycle, inhibited
cell viability and proliferation in a BL cell line model. Our findings explain a new
mechanism of BL pathogenesis and may also have implications in the therapy of
FAMLF-overexpressing BL.
Collapse
Affiliation(s)
- J G Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Y Ding
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Y M Huang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - W L Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - L L Pan
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Y Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - X L Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Y Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - S Y Wang
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - X N Wu
- School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Xu W, Jiang K, Shen M, Chen Y, Huang HY. Jumonji domain containing 2A predicts prognosis and regulates cell growth in lung cancer depending on miR-150. Oncol Rep 2015; 35:352-8. [PMID: 26498874 DOI: 10.3892/or.2015.4349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
Lung cancer has become the most common cancer worldwide, of which non-small cell lung cancer (NSCLC) accounts for over 80%. Previous studies have shown that the Jumonji domain containing 2A (JMJD2A) was aberrantly expressed in various tumors and involved in the regulation of tumor progression, but the role of JMJD2A on the tumorigenesis in NSCLC and the underlying mechanisms are still unclear. In the present study, we first identified the expression of JMJD2A in NSCLC tissues and cell lines through quantitative RT-PCR (qRT-PCR) and western blotting. Next, the effects of JMJD2A on the progression of NSCLC were analyzed. MTT assay was performed to measure the cell numbers and fluorescence-activated cell sorting (FACS) was adopted to evaluate cell apoptosis. Finally, the relationship between JMJD2A and miR-150 involved in NSCLC was studied. Our results suggested that JMJD2A was significantly overexpressed in NSCLC samples and cell lines. Kaplan-Meier analysis showed that high level of JMJD2A predicted a poor prognosis. Knockdown of JMJD2A inhibited tumor growth and promoted cell apoptosis in NSCLC cells. Additionally, miR-150 was upregulated in NSCLC tissues and positively related with JMJD2A expression. Significant downregulation of miR-150 was observed with JMJD2A knockdown. Furthermore, JMJD2A knockdown inhibited NSCLC cell proliferation while the silencing of miR-150 attenuated the inhibition effect on cell proliferation, suggesting that the effect of JMJD2A on NSCLC cell growth was dependent on miR-150. Thus, our findings identified that JMJD2A played an oncogenic role in NSCLC via regulating miR-150. JMJD2A could possibly serve as a prognostic factor and potential target for NSCLC therapy.
Collapse
Affiliation(s)
- Weihua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Kanqiu Jiang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hao-Yue Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
13
|
Stamatopoulos B, Van Damme M, Crompot E, Dessars B, Housni HE, Mineur P, Meuleman N, Bron D, Lagneaux L. Opposite Prognostic Significance of Cellular and Serum Circulating MicroRNA-150 in Patients with Chronic Lymphocytic Leukemia. Mol Med 2015; 21:123-33. [PMID: 25584781 DOI: 10.2119/molmed.2014.00214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (or miRs) play a crucial role in chronic lymphocytic leukemia (CLL) physiopathology and prognosis. In addition, circulating microRNAs in body fluids have been proposed as new biomarkers. We investigated the expression of matched cellular and serum circulating microRNA-150 by quantitative real-time PCR (qPCR) from purified CD19(+) cells or from CLL serums obtained at diagnosis in a cohort of 273/252 CLL patients with a median follow-up of 78 months (range 7-380) and correlated it to other biological or clinical parameters. We showed that miR-150 was significantly overexpressed in CLL cells/serums compared with healthy subjects (P < 0.0001). Among CLL patients, a low cellular miR-150 expression level was associated with tumor burden, disease aggressiveness and poor prognostic factors. In contrast, a high level of serum miR-150 was associated with tumor burden markers and some markers of poor prognosis. Similarly, cellular and serum miR-150 also predicted treatment-free survival (TFS) and overall survival (OS) in an opposite manner: patients with low cellular/serum miR-150 levels have median TFS of 40/111 months compared with high-level patients who have a median TFS of 122/60 months (P < 0.0001/P = 0.0066). Similar results were observed for OS. We also found that cellular and serum miR-150 levels vary in an opposite manner during disease progression and that cellular miR-150 could be regulated by its release into the extracellular space. Cellular and serum levels of miR-150 are associated with opposite clinical prognoses and could be used to molecularly monitor disease evolution as a new prognostic factor in CLL.
Collapse
Affiliation(s)
- Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Michaël Van Damme
- Laboratory of Clinical Cell Therapy, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Barbara Dessars
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Hakim El Housni
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Mineur
- Department of Hemato-Oncology, Grand Hôpital de Charleroi, Gilly, Belgium
| | | | - Dominique Bron
- Department of Hematology, Institut Jules Bordet, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Faculty of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Sempere LF. Tissue slide-based microRNA characterization of tumors: how detailed could diagnosis become for cancer medicine? Expert Rev Mol Diagn 2014; 14:853-69. [PMID: 25090088 PMCID: PMC4364265 DOI: 10.1586/14737159.2014.944507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
miRNAs are short, non-coding, regulatory RNAs that exert cell type-dependent, context-dependent, transcriptome-wide gene expression control under physiological and pathological conditions. Tissue slide-based assays provide qualitative (tumor compartment) and semi-quantitative (expression levels) information about altered miRNA expression at single-cell resolution in clinical tumor specimens. Reviewed here are key technological advances in the last 5 years that have led to implementation of fully automated, robust and reproducible tissue slide-based assays for in situ miRNA detection on US FDA-approved instruments; recent tissue slide-based discovery studies that suggest potential clinical applications of specific miRNAs in cancer medicine are highlighted; and the challenges in bringing tissue slide-based miRNA assays into the clinic are discussed, including clinical validation, biomarker performance, biomarker space and integration with other biomarkers.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Laboratory of microRNA Diagnostics and Therapeutics, Van Andel Research Institute, 333 Bostwick Ave, N.E, Grand Rapids, MI 49503, USA
| |
Collapse
|
15
|
Jin M, Yang Z, Ye W, Xu H, Hua X. MicroRNA-150 predicts a favorable prognosis in patients with epithelial ovarian cancer, and inhibits cell invasion and metastasis by suppressing transcriptional repressor ZEB1. PLoS One 2014; 9:e103965. [PMID: 25090005 PMCID: PMC4121232 DOI: 10.1371/journal.pone.0103965] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
MicroRNA (miR)-150 has been reported to be dramatically downregulated in human epithelial ovarian cancer (EOC) tissues and patients’ serum compared to normal controls. This study aimed to investigate clinical significance and molecular mechanisms of miR-150 in EOC. In the current study, quantitative real-time PCR analysis showed that miR-150 was significantly downregulated in human EOC tissues compared to normal tissue samples. Then, we demonstrated the significant associations of miR-150 downregulation with aggressive clinicopathological features of EOC patients, including high clinical stage and pathological grade, and shorter overall and progression-free survivals. More importantly, the multivariate analysis identified miR-150 expression as an independent prognostic biomarker in EOC. After that, luciferase reporter assays demonstrated that Zinc Finger E-Box Binding Homeobox 1 (ZEB1), a crucial regulator of epithelial-to-mesenchymal transition (EMT), was a direct target of miR-150 in EOC cells. Moreover, we found that the ectopic expression of miR-150 could efficiently inhibit cell proliferation, invasion and metastasis by suppressing the expression of ZEB1. Furthermore, we also observed a significantly negative correlation between miR-150 and ZEB1 mRNA expression in EOC tissues (rs = –0.45, P<0.001). In conclusion, these findings offer the convincing evidence that aberrant expression of miR-150 may play a role in tumor progression and prognosis in patients with EOC. Moreover, our data reveal that miR-150 may function as a tumor suppressor and modulate EOC cell proliferation, and invasion by directly and negatively regulating ZEB1, implying the re-expression of miR-150 might be a potential therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Minfei Jin
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zujing Yang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiping Ye
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongling Xu
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Hua
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|