1
|
Giannoudis A, Sokol ES, Bhogal T, Ramkissoon SH, Razis ED, Bartsch R, Shaw JA, McGregor K, Clark A, Huang RSP, Palmieri C. Breast cancer brain metastases genomic profiling identifies alterations targetable by immune-checkpoint and PARP inhibitors. NPJ Precis Oncol 2024; 8:282. [PMID: 39706915 DOI: 10.1038/s41698-024-00761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Understanding the genomic landscape of breast cancer brain metastases (BCBMs) is key to developing targeted treatments. In this study, targetable genomic profiling was performed on 822 BCBMs, 11,988 local breast cancer (BC) biopsies and 15,516 non-central nervous system (N-CNS) metastases (all unpaired samples) collected during the course of routine clinical care by Foundation Medicine Inc (Boston, MA). Clinically relevant genomic alterations were significantly enriched in BCBMs compared to local BCs and N-CNS metastases. Homologous recombination deficiency as measured by BRCA1/2 alteration prevalence and loss-of-heterozygosity and immune checkpoint inhibitor (ICI) biomarkers [Tumor mutation burden (TMB)-High, Microsatellite instability (MSI)-High, PD-L1/L2)] were significantly more prevalent in BCBM than local BC and N-CNS. High PD-L1 protein expression was observed in ER-negative/HER2-negative BCBMs (48.3% vs 50.0% in local BCs, 21.4% in N-CNS). Our data highlights that a high proportion of BCBMs are potentially amenable to treatment with targeted therapeutic agents including PARP inhibitors and ICIs.
Collapse
Affiliation(s)
- A Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - E S Sokol
- Foundation Medicine, Inc., Boston, MA, USA
| | - T Bhogal
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | - E D Razis
- Hygeia Hospital, 3rd Oncology Department, Marousi, Athens, Greece
| | - R Bartsch
- Medical University of Vienna, Department of Medicine I, Division of Oncology, Vienna, Austria
| | - J A Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - K McGregor
- Foundation Medicine, Inc., Boston, MA, USA
| | | | | | - C Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
2
|
André C, Bertaut A, Ladoire S, Desmoulins I, Jankowski C, Beltjens F, Charon-Barra C, Bergeron A, Richard C, Boidot R, Arnould L. HER2-Low Luminal Breast Carcinoma Is Not a Homogenous Clinicopathological and Molecular Entity. Cancers (Basel) 2024; 16:2009. [PMID: 38893129 PMCID: PMC11171142 DOI: 10.3390/cancers16112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND With the development of some new antibody-drug conjugates, the HER2 classification of breast carcinomas now includes the HER2-low (H2L) category: IHC 1+, 2+ non-amplified by ISH, and double-equivocal carcinomas, mostly luminal, expressing hormone receptors (HR+). METHODS We analyzed mutational status and transcriptomic activities of three HER2 effector pathways: PI3K-AKT, MAPK, and JAK-STAT, in association with clinicopathologic features, in 62 H2L carcinomas compared to 43 HER2-positive and 20 HER2-negative carcinomas, all HR+. RESULTS H2L carcinomas had significantly lower histoprognostic grades and mitotic and Ki67 proliferation indexes than HER2-positive carcinomas. Their PIK3CA mutation rates were close to those of HER2-negative and significantly higher than in HER2-positive carcinomas, contrary to TP53 mutations. At the transcriptomic level, we identified three distinct groups which did not reflect the new HER2 classification. H2L and HER2-negative carcinomas shared most of clinicopathological and molecular characteristics, except HER2 membrane expression (mRNA levels). The presence of a mutation in a signaling pathway had a strong pathway activation effect. PIK3CA mutations were more prevalent in H2L carcinomas, leading to a strong activation of the PI3K-AKT signaling pathway even in the absence of HER2 overexpression/amplification. CONCLUSION PIK3CA mutations may explain the failure of conventional anti-HER2 treatments, suggesting that new antibody-drug conjugates may be more effective.
Collapse
Affiliation(s)
- Céline André
- Unit of Pathology, Department of Tumor Biology and Pathology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (F.B.); (C.C.-B.); (A.B.); (L.A.)
- Unit of Pathology, University Hospital Center, 21000 Dijon, France
| | - Aurélie Bertaut
- Unit of Methodology and Biostatistics, Georges-François Leclerc Cancer Center, 21000 Dijon, France;
| | - Sylvain Ladoire
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (S.L.); (I.D.)
- Unit 1231 (INSERM U1231), National Institute of Health and Medical Research, 21000 Dijon, France
- Department of Medicine, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Isabelle Desmoulins
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (S.L.); (I.D.)
| | - Clémentine Jankowski
- Department of Surgery, Georges-François Leclerc Cancer Center, 21000 Dijon, France;
| | - Françoise Beltjens
- Unit of Pathology, Department of Tumor Biology and Pathology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (F.B.); (C.C.-B.); (A.B.); (L.A.)
| | - Céline Charon-Barra
- Unit of Pathology, Department of Tumor Biology and Pathology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (F.B.); (C.C.-B.); (A.B.); (L.A.)
| | - Anthony Bergeron
- Unit of Pathology, Department of Tumor Biology and Pathology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (F.B.); (C.C.-B.); (A.B.); (L.A.)
| | - Corentin Richard
- Unit of Molecular Pathology, Department of Tumor Biology and Pathology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (C.R.); (R.B.)
| | - Romain Boidot
- Unit of Molecular Pathology, Department of Tumor Biology and Pathology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (C.R.); (R.B.)
| | - Laurent Arnould
- Unit of Pathology, Department of Tumor Biology and Pathology, Georges-François Leclerc Cancer Center, 21000 Dijon, France; (F.B.); (C.C.-B.); (A.B.); (L.A.)
- Unit 1231 (INSERM U1231), National Institute of Health and Medical Research, 21000 Dijon, France
| |
Collapse
|
3
|
Lu Q, Wang N, Jiang K, Zhou H, Zhang P, Zhang J, Wang S, Sun P, Xu F. Comprehensive genomic profiling to identify actionable alterations for breast cancer brain metastases in the Chinese population. ESMO Open 2024; 9:102389. [PMID: 38460250 PMCID: PMC10940923 DOI: 10.1016/j.esmoop.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/24/2023] [Accepted: 01/27/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Breast cancer brain metastasis (BCBM) is a crucial issue in the treatment of breast cancer and is associated with poor prognosis. Therefore, novel therapeutic targets are urgently needed in clinical practice. In this study, we aimed to identify potential actionable targets in brain metastases (BMs) utilising the FoundationOne® CDx (F1CDx). PATIENTS AND METHODS Formalin-fixed paraffin-embedded archived specimens including 16 primary breast tumours (PTs), 49 BCBMs and 7 extracranial metastases (ECMs) from 54 patients who underwent surgery for BCBM were tested using F1CDx. Tumour-infiltrated lymphocytes (TILs) of BMs were also tested using haematoxylin-eosin staining. RESULTS The median tumour mutational burden (TMB) and TILs in BMs were 5.0 (range 0-29) mut/Mb and 1.0% (range 0%-5.0%), respectively. High TMB (≥10 mut/Mb) was detected in four cases (8%). Genomic alterations (GAs) were detected in all samples. The top-ranked somatic mutations in BMs were TP53 (82%), PIK3CA (35%), MLL2 (22%), BRCA2 (14%) and ATM (14%) and the most prevalent copy number alterations were ERBB2 (64%), RAD21 (36%), CCND1 (32%), FGF19 (30%) and FGF3 (30%). The most prevalent GAs were relatively consistent between paired PTs and BMs. Actionable GAs were detected in 94% of all BMs. Consistent rate in actionable GAs was 38% (6/16) between paired PTs/ECMs and BMs. Compared to matched PTs/ECMs, additional actionable GAs (BRAF, FGFR1, PTEN, KIT and CCND1) were discovered in 31% (5/16) of the BMs. CONCLUSIONS TMB and TILs were relatively low in BCBMs. Comparable consistency in actionable GAs was identified between BCBMs and matched PTs/ECMs. It was, therefore, logical to carry out genomic testing for BCBMs to identify potential new therapeutic targets when BCBM specimens were available, as ∼31% of samples carried additional actionable GAs.
Collapse
Affiliation(s)
- Q Lu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - N Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - K Jiang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - H Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - P Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - J Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - S Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - P Sun
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - F Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
4
|
Aurora B Kinase Inhibition by AZD1152 Concomitant with Tumor Treating Fields Is Effective in the Treatment of Cultures from Primary and Recurrent Glioblastomas. Int J Mol Sci 2023; 24:ijms24055016. [PMID: 36902447 PMCID: PMC10003311 DOI: 10.3390/ijms24055016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor Treating Fields (TTFields) were incorporated into the treatment of glioblastoma, the most malignant brain tumor, after showing an effect on progression-free and overall survival in a phase III clinical trial. The combination of TTFields and an antimitotic drug might further improve this approach. Here, we tested the combination of TTFields with AZD1152, an Aurora B kinase inhibitor, in primary cultures of newly diagnosed (ndGBM) and recurrent glioblastoma (rGBM). AZD1152 concentration was titrated for each cell line and 5-30 nM were used alone or in addition to TTFields (1.6 V/cm RMS; 200 kHz) applied for 72 h using the inovitro™ system. Cell morphological changes were visualized by conventional and confocal laser microscopy. The cytotoxic effects were determined by cell viability assays. Primary cultures of ndGBM and rGBM varied in p53 mutational status; ploidy; EGFR expression and MGMT-promoter methylation status. Nevertheless; in all primary cultures; a significant cytotoxic effect was found following TTFields treatment alone and in all but one, a significant effect after treatment with AZD1152 alone was also observed. Moreover, in all primary cultures the combined treatment had the most pronounced cytotoxic effect in parallel with morphological changes. The combined treatment of TTFields and AZD1152 led to a significant reduction in the number of ndGBM and rGBM cells compared to each treatment alone. Further evaluation of this approach, which has to be considered as a proof of concept, is warranted, before entering into early clinical trials.
Collapse
|
5
|
R HC, Kumar S U, R G, Naayanan PJ, Sathiyarajeswaren P, Devi MSS, K SS, Doss C GP. An integrated investigation of structural and pathway alteration caused by PIK3CA and TP53 mutations identified in cfDNA of metastatic breast cancer. J Cell Biochem 2023; 124:188-204. [PMID: 36563059 DOI: 10.1002/jcb.30354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
In peripheral blood, cell-free DNA (cfDNA) contains circulating tumor DNA (ctDNA), which indicates molecular abnormalities in metastatic breast tumor tissue. The sequencing of cfDNA of Metastatic Breast Cancer (MBC) patients allows assessment of therapy response and noninvasive treatment. In the proposed study, clinically significant alterations in PIK3CA and TP53 genes associated with MBC resulting in a missense substitution of His1047Arg and Arg282Trp from an next-generation sequencing-based multi-gene panel were reported in a cfDNA of a patient with MBC. To investigate the impact of the reported mutation, we used molecular docking, molecular dynamics simulation, network analysis, and pathway analysis. Molecular Docking analysis determined the distinct binding pattern revealing H1047R-ATP complex has a higher number of Hydrogen bonds (H-bonds) and binding affinity with a slight difference compared to the PIK3CA-ATP complex. Following, molecular dynamics simulation for 200 ns, of which H1047R-ATP complex resulted in the instability of PIK3CA. Similarly, for TP53 mutant R282W, the zinc-free state (apo) and zinc-bounded (holo) complexes were investigated for conformational change between apo and holo complexes, of which the holo complex mutant R282W was unstable. To validate the conformational change of PIK3CA and TP53, 80% mutation of H1047R in the kinase domain of p110α expressed ubiquitously in PIK3CA protein that alters PI3K pathway, while R282W mutation in DNA binding helix (H2) region of P53 protein inhibits the transcription factor in P53 pathway causing MBC. According to our findings, the extrinsic (hypoxia, oxidative stress, and acidosis); intrinsic factors (MYC amplification) in PIK3CA and TP53 mutations will provide potential insights for developing novel therapeutic methods for MBC therapy.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | | - M S Shree Devi
- Siddha Central Research Institute (CCRS), Chennai, Tamil Nadu, India
| | - Satish Srinivas K
- Department of Radiation Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
González-Martínez S, Pizarro D, Pérez-Mies B, Caniego-Casas T, Rodríguez-Peralto JL, Curigliano G, Cortés A, Gión M, Cortés J, Palacios J. Differences in the Molecular Profile between Primary Breast Carcinomas and Their Cutaneous Metastases. Cancers (Basel) 2022; 14:cancers14051151. [PMID: 35267459 PMCID: PMC8909188 DOI: 10.3390/cancers14051151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The development of new strategies for the management of cutaneous metastases is a major clinical challenge because of the poor prognosis. To advance in this field, a better understanding of the molecular alterations involved in the metastatic process is needed. In the present study, the clinicopathological characteristics of breast cancer that develop cutaneous metastases were analyzed and the molecular differences between primary breast tumors and their corresponding cutaneous metastases were compared. We observed that the surrogate molecular type of breast cancer with an increased risk to metastasize to the skin was triple negative. In total, 48.5% of the cutaneous metastases presented some additional molecular alteration with respect to the primary tumor. However, no characteristic mutational pattern related to skin metastasis development was observed. Identifying the genes involved in the development of cutaneous metastases is important to gain insights into the biology of the disease and to identify possible diagnostic and therapeutic biomarkers. Abstract Background: The characterization of molecular alterations of primary breast carcinomas (BC) and their cutaneous metastases (CM) to identify genes involved in the metastatic process have not yet been completely accomplished. Methods: To investigate the molecular alterations of BC and their CM, a total of 66 samples (33 BC and 33 CM) from 33 patients were analyzed by immunohistochemical and massive parallel sequencing analyses. In addition, the clinicopathological characteristics of patients and tumors were analyzed. Results: Triple negative (TN) BCs were overrepresented (36.4%) among tumors that developed CM. A change of tumor surrogate molecular type in metastases was found in 15% of patients and 48.5% of the CM presented some additional molecular alteration with respect to the primary tumor, the most frequent were amplification of MYC and MDM4, and mutations in TP53 and PIK3CA. Survival was related to histological grade, tumor surrogate molecular type and TP53 mutations in the univariate analysis but only the tumor surrogate molecular type remained as a prognostic factor in the multivariate analysis. Conclusions: The TN molecular type has a greater risk of developing skin metastases. There are phenotypic changes and additional molecular alterations in skin metastases compared to the corresponding primary breast tumors in nearly half of the patients. Although these changes do not follow a specific pattern and varied from patient to patient, they could impact on the treatment. More studies with larger patient and sample cohorts are needed.
Collapse
Affiliation(s)
- Silvia González-Martínez
- Clinical Research, Ramón y Cajal Hospital, 28034 Madrid, Spain;
- “Contigo Contra el Cáncer de la Mujer” Foundation, 28010 Madrid, Spain
| | - David Pizarro
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
| | - Belén Pérez-Mies
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
- Department of Pathology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain;
- Faculty of Medicine, University of Alcalá, 28801 Madrid, Spain
| | - Tamara Caniego-Casas
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
| | - José Luis Rodríguez-Peralto
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain;
- I+D Institute, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Department of Pathology, Medical School, Complutense University, 28040 Madrid, Spain
| | - Giuseppe Curigliano
- European Institute of Oncology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy;
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Alfonso Cortés
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain; (A.C.); (M.G.)
| | - María Gión
- Department of Medical Oncology, Ramón y Cajal University Hospital, 28034 Madrid, Spain; (A.C.); (M.G.)
| | - Javier Cortés
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain;
- Department of Medicine, Faculty of Biomedical and Health Sciences, European University of Madrid, 28670 Madrid, Spain
- International Breast Cancer Center (IBCC), Quironsalud Group, 08017 Barcelona, Spain
- Medica Scientia Innovation Research, 08007 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Correspondence: (J.C.); (J.P.)
| | - José Palacios
- Molecular Pathology of Cancer Group, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
- Department of Pathology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
- Centre for Biomedical Research in Cancer Networks (CIBERONC), Carlos III Health Institute, 28029 Madrid, Spain;
- Faculty of Medicine, University of Alcalá, 28801 Madrid, Spain
- Correspondence: (J.C.); (J.P.)
| |
Collapse
|
7
|
Discordance of PIK3CA and TP53 mutations between breast cancer brain metastases and matched primary tumors. Sci Rep 2021; 11:23548. [PMID: 34876602 PMCID: PMC8651781 DOI: 10.1038/s41598-021-02903-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022] Open
Abstract
There is limited knowledge of the biology of breast cancer (BC) brain metastasis (BM). We primarily aimed to determine the mutations in BCBM and to compare the mutational pattern with the matched primary breast cancer (BC). Secondary aims were to determine mutations in each subgroup (Luminal A-/B-like, HER2+ and TNBC) of BCBM, and to determine survival according to specific mutations. We investigated 57 BCBMs, including 46 cases with matched primary tumors (PT) by targeted Next Generation Sequencing (NGS) using the Cancer Hotspot Panel v2 (ThermoFisher Scientific) covering 207 targeted regions in 50 cancer related genes. Subtype according to immunohistochemistry was re-evaluated. NGS results fulfilling sequencing quality criteria were obtained from 52 BM and 41 PT, out of which 37 were matched pairs. Pathogenic mutations were detected in 66% of PTs (27/41), and 62% of BMs (32/52). TP53 mutations were most frequent; 49% (20/41) of PTs and 48% (25/52) in BMs, followed by PIK3CA mutations; 22% (9/42) in PTs and 25% (13/52) in BMs. Mutations in CDH1, EGFR, HRAS, RB1 CDKN2A and PTEN were detected in single pairs or single samples. Mutational pattern was discordant in 24% of matched pairs. We show a discordance of PIK3CA and TP53 mutations of roughly 25% indicating the need to develop methods to assess mutational status in brain metastasis where analysis of cell-free DNA from cerebrospinal fluid (CSF) has shown promising results.
Collapse
|
8
|
Li D, Huang Y, Cai L, Wu M, Bao H, Xu Y, Wei Y, Wu S, Wu X, Shao Y, Zhao W, Lv G, Huang S, Zhang T, Shi Y. Genomic landscape of metastatic lung adenocarcinomas from large-scale clinical sequencing. Neoplasia 2021; 23:1204-1212. [PMID: 34735995 PMCID: PMC8571538 DOI: 10.1016/j.neo.2021.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Metastases are responsible for over 70% of deaths from lung adenocarcinomas. Previous large-scale studies of LUAD mainly focused on primary diseases. We aimed to comprehensively analyze the genomic landscape of metastatic LUADs and elucidate its clinical implications in the context of precision medicine. METHODS We performed retrospective analyses on targeted sequencing data of 3,743 primary tumors and 934 metastases from 4,480 patients with lung adenocarcinomas, and PD-L1 immunohistochemical data of 1,336 primary tumors and 252 metastases from 1,588 LUAD patients. RESULTS Metastases generally manifested significantly higher mutational burdens and chromosomal instability than primary lung adenocarcinomas. Clinically actionable alterations, including ALK mutations, ALK and ROS1 fusions, and MET copy number gains, were enriched in metastases, particularly metastases to some specific organs/tissues, such as lymph nodes, liver, and brain. PD-L1 expression decreased as the approximate metastatic distance increased. Additional data of paired primary tumors and metastases to lymph nodes and brain validated patterns of actionable alterations and candidates for metastatic drivers. Two evolutionary modes of metastatic dissemination, common origins and distinct origins, were identified in both types of primary-metastasis pairs. CONCLUSIONS Our study showed heterogenous patterns of clinically actionable alterations, PD-L1 expressions, metastatic driver candidates, and evolutionary patterns among multiple types of metastases of lung adenocarcinomas, which may advise the planning of treatments and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Dingbiao Li
- Department of Thoracic Surgery, Kunming Yan'an Hospital, Yunnan Provincial Key Laboratory of Cancer Immune Prevention and Control, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, China
| | - Yong Huang
- Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Lijun Cai
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Min Wu
- Nanjing Geneseeq Technology Inc., Nanjing 210032, China
| | - Hua Bao
- Nanjing Geneseeq Technology Inc., Nanjing 210032, China
| | - Yang Xu
- Nanjing Geneseeq Technology Inc., Nanjing 210032, China
| | - Yulin Wei
- Nanjing Geneseeq Technology Inc., Nanjing 210032, China
| | - Shuyu Wu
- Nanjing Geneseeq Technology Inc., Nanjing 210032, China
| | - Xue Wu
- Nanjing Geneseeq Technology Inc., Nanjing 210032, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing 210032, China; School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Guoli Lv
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China..
| | - Yunfei Shi
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China..
| |
Collapse
|
9
|
González-Martínez S, Pizarro D, Pérez-Mies B, Caniego-Casas T, Curigliano G, Cortés J, Palacios J. Clinical, Pathological, and Molecular Features of Breast Carcinoma Cutaneous Metastasis. Cancers (Basel) 2021; 13:5416. [PMID: 34771579 PMCID: PMC8582578 DOI: 10.3390/cancers13215416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous metastases (CMs) account for 2% of all skin malignancies, and nearly 70% of CMs in women originate from breast cancer (BC). CMs are usually associated with poor prognosis, are difficult to treat, and can pose diagnostic problems, such as in histopathological diagnosis when occurring long after development of the primary tumor. In addition, the molecular differences between the primary tumors and their CMs, and between CMs and metastases in other organs, are not well defined. Here, we review the main clinical, pathological, and molecular characteristics of breast cancer CMs. Identifying molecular markers in primary BC that predict CM and can be used to determine the molecular differences between primary tumors and their metastases is of great interest for the design of new therapeutic approaches.
Collapse
Affiliation(s)
- Silvia González-Martínez
- Clinical Researcher, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Fundación Contigo contra el Cáncer de la Mujer, 28010 Madrid, Spain
| | - David Pizarro
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
| | - Belén Pérez-Mies
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
| | - Tamara Caniego-Casas
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, 20141 Milan, Italy;
- Departament of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Javier Cortés
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
- International Breast Cancer Center (IBCC), Quironsalud Group, 08017 Barcelona, Spain
- Medica Scientia Innovation Research, 08007 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - José Palacios
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain; (D.P.); (B.P.-M.); (T.C.-C.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
| |
Collapse
|
10
|
Giannoudis A, Sartori A, Eastoe L, Zakaria R, Charlton C, Hickson N, Platt-Higgins A, Rudland PS, Irwin D, Jenkinson MD, Palmieri C. Genomic profiling using the UltraSEEK panel identifies discordancy between paired primary and breast cancer brain metastases and an association with brain metastasis-free survival. Breast Cancer Res Treat 2021; 190:241-253. [PMID: 34499316 PMCID: PMC8558178 DOI: 10.1007/s10549-021-06364-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Brain metastases (BM) are an increasing clinical problem. This study aimed to assess paired primary breast cancers (BC) and BM for aberrations within TP53, PIK3CA, ESR1, ERBB2 and AKT utilising the MassARRAY® UltraSEEK® technology (Agena Bioscience, San Diego, USA). METHODS DNA isolated from 32 paired primary BCs and BMs was screened using the custom UltraSEEK® Breast Cancer Panel. Data acquisition and analysis was performed by the Agena Bioscience Typer software v4.0.26.74. RESULTS Mutations were identified in 91% primary BCs and 88% BM cases. TP53, AKT1, ESR1, PIK3CA and ERBB2 genes were mutated in 68.8%, 37.5%, 31.3%, 28.1% and 3.1% respectively of primary BCs and in 59.4%, 37.5%, 28.1%, 28.1% and 3.1% respectively of BMs. Differences in the mutations within the 5 genes between BC and paired BM were identified in 62.5% of paired cases. In primary BCs, ER-positive/HER2-negative cases harboured the most mutations (70%), followed by ER-positive/HER2-positive (15%) and triple-negatives (13.4%), whereas in BMs, the highest number of mutations was observed in triple-negative (52.5%), followed by ER-positive/HER2-negative (35.6%) and ER-negative/HER2-positive (12%). There was a significant association between the number of mutations in the primary BC and breast-to-brain metastasis-free survival (p = 0.0001) but not with overall survival (p = 0.056). CONCLUSION These data demonstrate the discordancy between primary BC and BM, as well as the presence of clinically important, actionable mutations in BCBM. The UltraSEEK® Breast Cancer Panel provides a tool for BCBM that can be utilised to direct more tailored treatment decisions and for clinical studies investigating targeted agents.
Collapse
Affiliation(s)
- Athina Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | | | | | - Rasheed Zakaria
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | - Nicholas Hickson
- Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Angela Platt-Higgins
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Philip S Rudland
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | | | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Systems, Molecular and Integrative Biology, Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Carlo Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
11
|
Morgan AJ, Giannoudis A, Palmieri C. The genomic landscape of breast cancer brain metastases: a systematic review. Lancet Oncol 2021; 22:e7-e17. [PMID: 33387511 DOI: 10.1016/s1470-2045(20)30556-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer brain metastases are an increasing clinical problem. Studies have shown that brain metastases from breast cancer have a distinct genomic landscape to that of the primary tumour, including the presence of mutations that are absent in the primary breast tumour. In this Review, we aim to review and evaluate genomic sequencing data for breast cancer brain metastases by searching PubMed, Embase, and Scopus for relevant articles published in English between database inception and May 30, 2020. Extracted information includes data for mutations, receptor status (eg, immunohistochemistry and Prediction Analysis of Microarray 50 [PAM50]), and copy number alterations from published manuscripts and supplementary materials. Of the 431 articles returned by the database search, 13 (3%) breast cancer brain metastases sequencing studies, comprising 164 patients with sequenced brain metastases, met all our inclusion criteria. We identified 268 mutated genes that were present in two or more breast cancer brain metastases samples. Of these 268 genes, 22 (8%) were mutated in five or more patients and pathway enrichment analysis showed their involvement in breast cancer-related signalling pathways, regulation of gene transcription, cell cycle, and DNA repair. Actionability analysis using the Drug Gene Interaction Database revealed that 15 (68%) of these 22 genes are actionable drug targets. In addition, immunohistochemistry and PAM50 data showed receptor discordancy between primary breast cancers and their paired brain metastases. This systematic review provides a detailed overview of the most commonly mutated genes identified in samples of breast cancer brain metastases and their clinical relevance. These data highlight the differences between primary breast cancers and brain metastases and the importance of acquiring and analysing brain metastasis samples for further study.
Collapse
Affiliation(s)
- Alexander J Morgan
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Athina Giannoudis
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Medical Oncology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
12
|
Watanabe T, Nanamiya H, Kojima M, Nomura S, Furukawa S, Soeda S, Tanaka D, Isogai T, Imai JI, Watanabe S, Fujimori K. Clinical implication of oncogenic somatic mutations in early-stage cervical cancer with radical hysterectomy. Sci Rep 2020; 10:18734. [PMID: 33127935 PMCID: PMC7599240 DOI: 10.1038/s41598-020-72518-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
It is well known that tumour initiation and progression are primarily an accumulation of genetic mutations. The mutation status of a tumour may predict prognosis and enable better selection of targeted therapies. In the current study, we analysed a total of 55 surgical tumours from stage IB-IIB cervical cancer (CC) patients who had undergone radical hysterectomy including pelvic lymphadenectomy, using a cancer panel covering 50 highly mutated tumorigenesis-related genes. In 35 patients (63.6%), a total 52 mutations were detected (58.3% in squamous cell carcinoma, 73.7% in adenocarcinoma), mostly in PIK3CA (34.5%) and KRAS and TP53 (9.1%). Being mutation-positive was significantly correlated with pelvic lymph node (PLN) metastasis (P = 0.035) and tended to have a worse overall survival (P = 0.076). In particular, in the patients with squamous cell carcinoma, there was a significant association between being mutation-positive and relapse-free survival (P = 0.041). The patients with PLN metastasis had a significantly worse overall survival than those without (P = 0.006). These results indicate that somatic mutation status is a predictive biomarker for PLN metastasis in early-stage CC, and is consequently related to poor prognosis. Therefore, comprehensive genetic mutations, rather than a single genetic mutation, should be examined widely in order to identify novel genetic indicators with clinical usefulness.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Hideaki Nanamiya
- Medical-Industrial Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Manabu Kojima
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shinji Nomura
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shigenori Furukawa
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Daisuke Tanaka
- Medical-Industrial Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Takao Isogai
- Medical-Industrial Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Jun-Ichi Imai
- Medical-Industrial Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shinya Watanabe
- Medical-Industrial Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| |
Collapse
|
13
|
Akahane T, Kanomata N, Harada O, Yamashita T, Kurebayashi J, Tanimoto A, Moriya T. Targeted next-generation sequencing assays using triplet samples of normal breast tissue, primary breast cancer, and recurrent/metastatic lesions. BMC Cancer 2020; 20:944. [PMID: 33004031 PMCID: PMC7528467 DOI: 10.1186/s12885-020-07432-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 09/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Next-generation sequencing (NGS) has shown that recurrent/metastatic breast cancer lesions may have additional genetic changes compared with the primary tumor. These additional changes may be related to tumor progression and/or drug resistance. However, breast cancer-targeted NGS is not still widely used in clinical practice to compare the genomic profiles of primary breast cancer and recurrent/metastatic lesions. Methods Triplet samples of genomic DNA were extracted from each patient’s normal breast tissue, primary breast cancer, and recurrent/metastatic lesion(s). A DNA library was constructed using the QIAseq Human Breast Cancer Panel (93 genes, Qiagen) and then sequenced using MiSeq (Illumina). The Qiagen web portal was utilized for data analysis. Results Successful results for three or four samples (normal breast tissue, primary tumor, and at least one metastatic/recurrent lesion) were obtained for 11 of 35 breast cancer patients with recurrence/metastases (36 samples). We detected shared somatic mutations in all but one patient, who had a germline mutation in TP53. Additional mutations that were detected in recurrent/metastatic lesions compared with primary tumor were in genes including TP53 (three patients) and one case each of ATR, BLM, CBFB, EP300, ERBB2, MUC16, PBRM1, and PIK3CA. Actionable mutations and/or copy number variations (CNVs) were detected in 73% (8/11) of recurrent/metastatic breast cancer lesions. Conclusions The QIAseq Human Breast Cancer Panel assay showed that recurrent/metastatic breast cancers sometimes acquired additional mutations and CNV. Such additional genomic changes could provide therapeutic target.
Collapse
Affiliation(s)
- Toshiaki Akahane
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Pathology, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Naoki Kanomata
- Department of Pathology, St. Luke's International Hospital, Akashi-cho 9-1, Chuoku, Tokyo, 104-8560, Japan. .,Department of Pathology, Kawasaki Medical School, Kurashiki, Japan.
| | - Oi Harada
- Department of Pathology, Hokuto Hospital, Obihiro, Hokkaido, Japan
| | - Tetsumasa Yamashita
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Japan
| | - Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
14
|
Anderson EJ, Mollon LE, Dean JL, Warholak TL, Aizer A, Platt EA, Tang DH, Davis LE. A Systematic Review of the Prevalence and Diagnostic Workup of PIK3CA Mutations in HR+/HER2- Metastatic Breast Cancer. Int J Breast Cancer 2020; 2020:3759179. [PMID: 32637176 PMCID: PMC7322582 DOI: 10.1155/2020/3759179] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
PIK3CA mutation frequency varies among breast cancer (BC) subtypes. Recent evidence suggests combination therapy with the PI3K inhibitor (PI3Ki) alpelisib and endocrine therapy (ET) improves response rates and progression-free survival (PFS) in PIK3CA-mutant, hormone receptor positive (HR+) BC versus ET alone; thus, better understanding the clinical and epidemiologic elements of these mutations is warranted. This systematic review characterizes the PIK3CA mutation epidemiology, type of testing approaches (e.g., liquid or tissue tumor biopsy), and stability/concordance (e.g., consistency in results by liquid versus solid tumor sample, by the same method over time) in patients with HR+/HER2- advanced (locally unresectable) or metastatic disease (HR+/HER2- mBC) and explores performance (e.g., pairwise concordance, sensitivity, specificity, or predictive value) of respective mutation findings. A comprehensive search of PubMed/MEDLINE, EMBASE, Cochrane Central, and select conference abstracts (i.e., AACR, ASCO, SABCS, ECCO, and ESMO conferences between 2014 and 2017) identified 39 studies of patients with HR+, HER2- mBC. The median prevalence of PIK3CA mutation was 36% (range: 13.3% to 61.5%); identified testing approaches more commonly used tissue over liquid biopsies and primarily utilized next-generation sequencing (NGS), polymerase chain reaction (PCR), or Sanger sequencing. There was concordance and stability between tissues (range: 70.4% to 94%) based on limited data. Given the clinical benefit of the PI3Ki alpelisib in patients with PIK3CA mutant HR+/HER2- mBC, determination of tumor PIK3CA mutation status is of importance in managing patients with HR+/HER2- mBC. Prevalence of this mutation and utility of test methodologies likely warrants PIK3CA mutation testing in all patients with this breast cancer subtype via definitive assessment of PIK3CA mutational status.
Collapse
Affiliation(s)
| | - Lea E. Mollon
- University of Arizona College of Pharmacy, Tucson, AZ, USA
| | - Joni L. Dean
- University of Arizona College of Pharmacy, Tucson, AZ, USA
| | | | | | | | | | - Lisa E. Davis
- University of Arizona College of Pharmacy, Tucson, AZ, USA
| |
Collapse
|
15
|
Freitag CE, Mei P, Wei L, Parwani AV, Li Z. Genetic alterations and their association with clinicopathologic characteristics in advanced breast carcinomas: focusing on clinically actionable genetic alterations. Hum Pathol 2020; 102:94-103. [PMID: 32445652 DOI: 10.1016/j.humpath.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Breast carcinomas (BCs) are genetically heterogeneous and associated with numerous mutations which can be used to predict outcomes and initiate targeted therapies. We investigated clinicopathologic characteristics associated with gene mutations detected using the FoundationOne CDx assay in a cohort of 223 clinically advanced BCs (66 locally recurrent and 157 metastatic) from our institution. One hundred fifty unique mutations were identified (total 1008) in the cohort, with the most prevalent (>10%) including TP53 (53.8%), PIK3CA (35%), MYC (22%), CCND1 (19.7%), FGF19 (19.7%), FGF4 (16.6%), FGF3 (16.1%), ZNF703 (14.8%), ESR1 (13.9%), FGFR1 (13.5%), PTEN (12.1%), and CDH1 (10.8%). ERBB2 genetic alteration was most common in human epidermal growth factor receptor 2 (HER2)-positive BCs, and GATA3 and ESR1 mutations were only identified in hormone receptor-positive BC. Mutations enriched in triple-negative BCs (TNBCs) included TP53, PTEN, RB1, and CDKN2A/B. CDH1 mutation was predominantly found in lobular carcinomas, and PIK3CA mutation was also enriched. Mutations enriched in metaplastic carcinomas with heterologous mesenchymal differentiation included TP53, PTEN, MCL1, CDKN2A/B, and NOTCH2. An increase in mutations of CCND1, FGF19, FGF4, FGF3, ESR1, and EMSY was identified in metastatic BCs compared with locally recurrent BCs. Overall, PIK3CA was the most frequent clinically actionable genetic alteration (35%), followed by MYC (22%), CCND1 (19.7%), and FGF3/FGF4/FGFR1 (16%). In conclusion, our study provides genetic insight into the biology of advanced BCs and summarizes their most frequent clinically actionable genetic alterations, generating useful genomic information for potential improvement of patient management.
Collapse
Affiliation(s)
- Cody Eric Freitag
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ping Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Lai Wei
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Martins PR, Machado CMT, Coxir SA, de Oliveira AJ, Moreira TB, Campos LS, Alcântara R, de Paula SOC, de Oliveira Salles PG, Gollob KJ, Magalhães WCS. Cervical cancer patients that respond to chemoradiation therapy display an intense tumor infiltrating immune profile before treatment. Exp Mol Pathol 2019; 111:104314. [DOI: 10.1016/j.yexmp.2019.104314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
|
17
|
D'Oronzo S, Lovero D, Palmirotta R, Stucci LS, Tucci M, Felici C, Cascardi E, Giardina C, Cafforio P, Silvestris F. Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Sci Rep 2019; 9:17276. [PMID: 31754145 PMCID: PMC6872745 DOI: 10.1038/s41598-019-53660-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Enumeration of circulating tumor cells (CTCs) may reflect the metastatic potential of breast cancer (BC). By using the DEPArray, we investigated CTCs with respect to their epithelial-to-mesenchymal transition phenotype and compared their genomic heterogeneity with tissue biopsies. Seventeen stage IV BC patients were enrolled. Pre-enriched CTC suspensions were stained with fluorescent-labeled antibodies to epithelial (E) and mesenchymal (M) markers. CTC samples were processed by DEPArray system and clustered in relation to their markers. DNA from CTCs, as well as from primary tumor samples, was sequenced by next generation sequencing to assess the mutational state of 50 major cancer-related genes. We identified four different CTC subsets that harbored different gene variants. The most heterogenous CTC subsets included the M+/E- phenotype, which, however, expressed only 7 repeatedly mutated genes, while in the M-/E+ subset multiple mutations affected only 2 out of 50 genes. When matching all gene variants among CTC subsets, a small number of mutations was shared by only 4 genes, namely ATM, FGFR3, PIK3CA, and TP53 that, however, were absent in primary tumors. Our results postulate that the detected mutations in all CTC subsets may be considered as genomic markers of metastatic dissemination to be investigated during early stages of BC.
Collapse
Affiliation(s)
- Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Eliano Cascardi
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Carmela Giardina
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy.
| |
Collapse
|
18
|
Mariscal-Mendizábal LF, Sevilla-Montoya R, Martínez-García AJ, Alaez-Verson C, Monroy-Muñoz IE, Pérez-Durán J, Cerón-Albarrán JA, Carrillo-Sánchez K, Molina-Garay C, Flores-Lagunes LL, Jimenez-Olivares M, Aguinaga-Ríos M. Clinical and genetic description of patients with prenatally identified cardiac tumors. Prenat Diagn 2019; 39:998-1004. [PMID: 31291687 DOI: 10.1002/pd.5521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Rhabdomyomas are the most common type of prenatal cardiac tumors. When isolated, 50% to 70% are related to the tuberous sclerosis complex (TSC). The aim of this study was to reinforce the importance of additional clinical data in patients with prenatal heart tumors. METHODS From 2010 to 2017, 10 prenatally detected cardiac tumors were referred to the Genetics Department, and a complete family history was taken. Postnatal echocardiographic and full clinical evaluation were completed. Next generation sequencing (NGS) of the TSC1 and TSC2 genes was performed. RESULTS The 10 cases were postnatally confirmed as rhabdomyomas. Four de novo and four family cases were detected, and only one patient was previously aware of the TSC diagnosis. Molecular analysis by NGS was performed in four patients with three TSC2 mutations, two of which were previously reported and one not. DISCUSSION Prenatal cardiac tumors are associated with TSC in 60% of cases. Prenatal diagnosis of cardiac tumors permits a further analysis of family members using the fetus as a clue for familial disease diagnosis.
Collapse
Affiliation(s)
| | - Rosalba Sevilla-Montoya
- Human Genetics and Genomics Department, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | - Carmen Alaez-Verson
- Genomics Diagnostic Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Irma E Monroy-Muñoz
- Human Genetics and Genomics Department, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Javier Pérez-Durán
- Human Genetics and Genomics Department, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Jorge A Cerón-Albarrán
- Human Genetics and Genomics Department, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Karol Carrillo-Sánchez
- Genomics Diagnostic Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Carolina Molina-Garay
- Genomics Diagnostic Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Luis L Flores-Lagunes
- Genomics Diagnostic Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marco Jimenez-Olivares
- Genomics Diagnostic Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Mónica Aguinaga-Ríos
- Human Genetics and Genomics Department, Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
19
|
Jung J, Jang K, Ju JM, Lee E, Lee JW, Kim HJ, Kim J, Lee SB, Ko BS, Son BH, Lee HJ, Gong G, Ahn SY, Choi JK, Singh SR, Chang S. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model. Cancer Lett 2018; 428:127-138. [DOI: 10.1016/j.canlet.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
|
20
|
Schrijver WAME, Selenica P, Lee JY, Ng CKY, Burke KA, Piscuoglio S, Berman SH, Reis-Filho JS, Weigelt B, van Diest PJ, Moelans CB. Mutation Profiling of Key Cancer Genes in Primary Breast Cancers and Their Distant Metastases. Cancer Res 2018; 78:3112-3121. [PMID: 29615433 PMCID: PMC6355142 DOI: 10.1158/0008-5472.can-17-2310] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/28/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023]
Abstract
Although the repertoire of somatic genetic alterations of primary breast cancers has been extensively catalogued, the genetic differences between primary and metastatic tumors have been less studied. In this study, we compared somatic mutations and gene copy number alterations of primary breast cancers and their matched metastases from patients with estrogen receptor (ER)-negative disease. DNA samples obtained from formalin-fixed paraffin-embedded ER-negative/HER2-positive (n = 9) and ER-, progesterone receptor (PR-), HER2-negative (n = 8) primary breast cancers and from paired brain or skin metastases and normal tissue were subjected to a hybridization capture-based massively parallel sequencing assay, targeting 341 key cancer genes. A large subset of nonsynonymous somatic mutations (45%) and gene copy number alterations (55%) was shared between the primary tumors and paired metastases. However, mutations restricted to either a given primary tumor or its metastasis, the acquisition of loss of heterozygosity of the wild-type allele, and clonal shifts of genes affected by somatic mutations, such as TP53 and RB1, were observed in the progression from primary tumors to metastases. No metastasis location-specific alterations were identified, but synchronous metastases showed higher concordance with the paired primary tumor than metachronous metastases. Novel potentially targetable alterations were found in the metastases relative to their matched primary tumors. These data indicate that repertoires of somatic genetic alterations in ER-negative metastatic breast cancers may differ from those of their primary tumors, even by the presence of driver and targetable somatic genetic alterations.Significance: Somatic genetic alterations in ER-negative breast cancer metastases may be distinct from those of their primary tumors, suggesting that for treatment-decision making, genetic analyses of DNA obtained from the metastatic lesion rather than from the primary tumor should be considered. Cancer Res; 78(12); 3112-21. ©2018 AACR.
Collapse
Affiliation(s)
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ju Youn Lee
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel H Berman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, the Netherlands.
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
21
|
Pop LA, Cojocneanu-Petric RM, Pileczki V, Morar-Bolba G, Irimie A, Lazar V, Lombardo C, Paradiso A, Berindan-Neagoe I. Genetic alterations in sporadic triple negative breast cancer. Breast 2018; 38:30-38. [DOI: 10.1016/j.breast.2017.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
|
22
|
Pezo RC, Chen TW, Berman HK, Mulligan AM, Razak AA, Siu LL, Cescon DW, Amir E, Elser C, Warr DG, Sridhar SS, Yu C, Wang L, Stockley TL, Kamel-Reid S, Bedard PL. Impact of multi-gene mutational profiling on clinical trial outcomes in metastatic breast cancer. Breast Cancer Res Treat 2017; 168:159-168. [PMID: 29177603 PMCID: PMC5847065 DOI: 10.1007/s10549-017-4580-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/14/2017] [Indexed: 11/24/2022]
Abstract
Purpose Next-generation sequencing (NGS) has identified recurrent genomic alterations in metastatic breast cancer (MBC); however, the clinical utility of incorporating routine sequencing to guide treatment decisions in this setting is unclear. We examine the frequency of genomic alterations in MBC patients from academic and community hospitals and correlate with clinical outcomes. Methods MBC patients with good performance status were prospectively recruited at the Princess Margaret Cancer Centre (PM) in Canada. Molecular profiling on DNA extracted from FFPE archival tissues was performed on the Sequenom MassArray platform or the TruSeq Amplicon Cancer Panel (TSACP) on the MiSeq platform. Clinical trial outcomes by RECIST 1.1 and time on treatment were reviewed retrospectively. Results From January 2012 to November 2015, 483 MBC patients were enrolled and 440 were genotyped. At least one somatic mutation was identified in 46% of patients, most commonly in PIK3CA (28%) or TP53 (13%). Of 203 patients with ≥ 1 mutation(s), 15% were treated on genotype-matched and 9% on non-matched trials. There was no significant difference for median time on treatment for patients treated on matched vs. non-matched therapies (3.6 vs. 3.8 months; p = 0.89). Conclusions This study provides real-world outcomes on hotspot genotyping and small targeted panel sequencing of MBC patients from academic and community settings. Few patients were matched to clinical trials with targeted therapies. More comprehensive profiling and improved access to clinical trials may increase therapeutic options for patients with actionable mutations. Further studies are needed to evaluate if this approach leads to improved clinical outcomes. Electronic supplementary material The online version of this article (10.1007/s10549-017-4580-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rossanna C Pezo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Division of Medical Oncology and Hematology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Tom W Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hal K Berman
- Laboratory Medicine Program, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Anna M Mulligan
- Laboratory Medicine Program, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Albiruni A Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Cancer Genomics Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - David W Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Christine Elser
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - David G Warr
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Srikala S Sridhar
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Celeste Yu
- Cancer Genomics Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Lisa Wang
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Tracy L Stockley
- Laboratory Medicine Program, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Cancer Genomics Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Suzanne Kamel-Reid
- Laboratory Medicine Program, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Cancer Genomics Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 7-723 700 University Avenue, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Cancer Genomics Program, Princess Margaret Cancer Centre, Toronto, Canada.
| |
Collapse
|
23
|
Du H, Pan B, Chen T. Evaluation of chemical mutagenicity using next generation sequencing: A review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:140-158. [PMID: 28506110 DOI: 10.1080/10590501.2017.1328831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mutations are heritable changes in the nucleotide sequence of DNA that can lead to many adverse effects. Genotoxicity assays have been used to identify chemical mutagenicity. Recently, next generation sequencing (NGS) has been used for this purpose. In this review, we present the progress in NGS application for assessing mutagenicity of chemicals, including the methods used for detecting the induced mutations, bioinformatics tools for analyzing the sequencing data, and chemicals whose mutagenicity has been evaluated using NGS. Available information suggests that NGS technology has unparalleled advantages for evaluating mutagenicity of chemicals can be applied for the next generation of mutagenicity tests.
Collapse
Affiliation(s)
- Hua Du
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Bohu Pan
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Tao Chen
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
24
|
Balendran S, Liebmann-Reindl S, Berghoff AS, Reischer T, Popitsch N, Geier CB, Kenner L, Birner P, Streubel B, Preusser M. Next-Generation Sequencing-based genomic profiling of brain metastases of primary ovarian cancer identifies high number of BRCA-mutations. J Neurooncol 2017; 133:469-476. [PMID: 28497333 PMCID: PMC5537326 DOI: 10.1007/s11060-017-2459-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/30/2017] [Indexed: 12/31/2022]
Abstract
Ovarian cancer represents the most common gynaecological malignancy and has the highest mortality of all female reproductive cancers. It has a rare predilection to develop brain metastases (BM). In this study, we evaluated the mutational profile of ovarian cancer metastases through Next-Generation Sequencing (NGS) with the aim of identifying potential clinically actionable genetic alterations with options for small molecule targeted therapy. Library preparation was conducted using Illumina TruSight Rapid Capture Kit in combination with a cancer specific enrichment kit covering 94 genes. BRCA-mutations were confirmed by using TruSeq Custom Amplicon Low Input Kit in combination with a custom-designed BRCA gene panel. In our cohort all eight sequenced BM samples exhibited a multitude of variant alterations, each with unique molecular profiles. The 37 identified variants were distributed over 22 cancer-related genes (23.4%). The number of mutated genes per sample ranged from 3 to 7 with a median of 4.5. The most commonly altered genes were BRCA1/2, TP53, and ATM. In total, 7 out of 8 samples revealed either a BRCA1 or a BRCA2 pathogenic mutation. Furthermore, all eight BM samples showed mutations in at least one DNA repair gene. Our NGS study of BM of ovarian carcinoma revealed a significant number of BRCA-mutations beside TP53, ATM and CHEK2 mutations. These findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian cancer metastasizing to the brain. Based on these findings, pharmacological PARP inhibition could be one potential targeted therapeutic for brain metastatic ovarian cancer patients.
Collapse
Affiliation(s)
- S Balendran
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - S Liebmann-Reindl
- Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Central Nervous System Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria
- Neurology Clinic, Heidelberg University Medical Center and Neurooncology Program, National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - T Reischer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - N Popitsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - C B Geier
- Immunology Outpatient Clinic, Schwarzspanierstraße 15/1/9, Vienna, Austria
| | - L Kenner
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research LBI-CR, Vienna, Austria
| | - P Birner
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Central Nervous System Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria
| | - B Streubel
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Core Facility Genomics, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Central Nervous System Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.
| | - M Preusser
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Central Nervous System Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Ross JS, Gay LM. Comprehensive genomic sequencing and the molecular profiles of clinically advanced breast cancer. Pathology 2017; 49:120-132. [DOI: 10.1016/j.pathol.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
|
26
|
Cheng J, Fu S, Wei C, Tania M, Khan MA, Imani S, Zhou B, Chen H, Xiao X, Wu J, Fu J. Evaluation of PIK3CA mutations as a biomarker in Chinese breast carcinomas from Western China. Cancer Biomark 2017; 19:85-92. [PMID: 28269754 DOI: 10.3233/cbm-160380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND PIK3CA gene encodes the p110 α catalytic subunit of the oncoprotein phosphatidylinositol 3-kinase (PI3 K) which regulates many biological processes such as cell proliferation, differentiation, migration and survival through the activation of various signaling pathways. OBJECTIVE In this study, we have investigated the possible somatic mutations in PIK3CA gene in invasive ductal breast carcinomas of Chinese women from Western China. METHODS Genomic DNA was extracted from the formalin-fixed paraffin-embedded (FFPE) tissue samples. The hotspot mutations in PIK3CA gene of exon 9 and exon 20 were studied by pyrosequencing. RESULTS The sequencing identified two hotspot mutations in exon 20 of one cancer samples at p. H1047L (c. 3140A > T) and eight cancer sample at p. H1047R (c. 3140A > G). No mutation in exon 9 of PIK3CA gene was found in these breast cancer tissue samples. PIK3CA mutations showed surprising clinicopathological features in breast cancer patients, as incidence of lymph node invasiveness is increased in the patients with PIK3CA mutation. In addition, all the patients showed tumor size bigger than 3 cm in diameter. It is important that for early detection and early treatment for BC in developing countries or areas like Western China, and for people to provide popularization education using scientific knowledge in cancer fields. CONCLUSIONS This study identified PIK3CA mutations in breast carcinoma patients of Western China that will enable a more rapid molecular diagnosis, and provide a stronger rationale evidence for development of precision therapeutic approaches as well as promising therapeutic targets for breast cancer treatment or patient management.
Collapse
Affiliation(s)
- Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shangyi Fu
- Honors College, University of Houston, Houston, TX 77204, USA
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mousumi Tania
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh, Vietnam
| | - Saber Imani
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hanchun Chen
- Department of Biochemistry, School of Life Sciencesand the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410013, China
| | - Xiuli Xiao
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingbo Wu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China
- Judicial Authentication Center, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|