1
|
de Souza MM, Cenci AR, Teixeira KF, Machado V, Mendes Schuler MCG, Gonçalves AE, Paula Dalmagro A, André Cazarin C, Gomes Ferreira LL, de Oliveira AS, Andricopulo AD. DYRK1A Inhibitors and Perspectives for the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:669-688. [PMID: 35726411 DOI: 10.2174/0929867329666220620162018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common form of dementia, especially in the elderly. Due to the increase in life expectancy, in recent years, there has been an excessive growth in the number of people affected by this disease, causing serious problems for health systems. In recent years, research has been intensified to find new therapeutic approaches that prevent the progression of the disease. In this sense, recent studies indicate that the dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) gene, which is located on chromosome 21q22.2 and overexpressed in Down syndrome (DS), may play a significant role in developmental brain disorders and early onset neurodegeneration, neuronal loss and dementia in DS and AD. Inhibiting DYRK1A may serve to stop the phenotypic effects of its overexpression and, therefore, is a potential treatment strategy for the prevention of ageassociated neurodegeneration, including Alzheimer-type pathology. OBJECTIVE In this review, we investigate the contribution of DYRK1A inhibitors as potential anti-AD agents. METHODS A search in the literature to compile an in vitro dataset including IC50 values involving DYRK1A was performed from 2014 to the present day. In addition, we carried out structure-activity relationship studies based on in vitro and in silico data. RESULTS molecular modeling and enzyme kinetics studies indicate that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. CONCLUSION further evaluation of DYRK1A inhibitors may contribute to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Márcia Maria de Souza
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Arthur Ribeiro Cenci
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Kerolain Faoro Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Valkiria Machado
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | | | - Ana Elisa Gonçalves
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Ana Paula Dalmagro
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Camila André Cazarin
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Aldo Sena de Oliveira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| |
Collapse
|
2
|
Cejas RB, Tamaño-Blanco M, Fontecha JE, Blanco JG. Impact of DYRK1A Expression on TNNT2 Splicing and Daunorubicin Toxicity in Human iPSC-Derived Cardiomyocytes. Cardiovasc Toxicol 2022; 22:701-712. [PMID: 35596909 PMCID: PMC9236996 DOI: 10.1007/s12012-022-09746-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
Cardiac troponin T (encoded by TNNT2) is involved in the contraction of cardiomyocytes during beating. The alternative splicing of TNNT2 results in four transcript variants with differential Ca2+ sensitivity. The splicing of TNNT2 involves phosphorylation of the splicing factor SRSF6 by DYRK1A. Altered TNNT2 splicing patterns have been identified in failing human hearts. There is a paucity of studies describing DYRK1A-SRSF6-TNNT2 interplays in human cardiomyocytes. Also, it is not known whether the sensitivity of cardiomyocytes to cardiotoxic anthracyclines is modified in the context of variable DYRK1A-TNNT2 expression. In this study, we investigated the impact of DYRK1A on the endogenous expression of TNNT2 splicing variants in iPSC-derived cardiomyocytes. We also examined whether DYRK1A expression modifies the sensitivity of cardiomyocytes to the cardiotoxic drug daunorubicin (DAU). DYRK1A over-expression increased the abundance of TNNT2 fetal variants by ~ 58% whereas the abundance of the adult cTnT3 variant decreased by ~ 27%. High DYRK1A expression increased the phosphorylation of SRSF6 by ~ 25-65%. DAU cytotoxicity was similar between cardiomyocytes with variable levels of DYRK1A expression. DYRK1A over-expression ameliorated the impact of DAU on beating frequency. This study lays the foundation to further investigate the contribution of variable DYRK1A-TNNT2 expression to Ca2+ handling and beating in human cardiomyocytes.
Collapse
Affiliation(s)
- Romina Beatriz Cejas
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Miriam Tamaño-Blanco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - John Edgar Fontecha
- Group for Applied Mathematical Modeling and Analytics (GAMMA), Industrial and Systems Engineering, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Javier Guillermo Blanco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
3
|
Liu T, Wang Y, Wang J, Ren C, Chen H, Zhang J. DYRK1A inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2022; 229:114062. [PMID: 34954592 DOI: 10.1016/j.ejmech.2021.114062] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a conserved protein kinase that plays essential roles in various biological processes. It is located in the region q22.2 of chromosome 21, which is involved in the pathogenesis of Down syndrome (DS). Moreover, DYRK1A has been shown to promote the accumulation of amyloid beta (Aβ) peptides leading to gradual Tau hyperphosphorylation, which contributes to neurodegeneration. Additionally, alterations in the DRK1A expression are also associated with cancer and diabetes. Recent years have witnessed an explosive increase in the development of DYRK1A inhibitors. A variety of novel DYRK1A inhibitors have been reported as potential treatments for human diseases. In this review, the latest therapeutic potential of DYRK1A for different diseases and the novel DYRK1A inhibitors discoveries are summarized, guiding future inhibitor development and structural optimization.
Collapse
Affiliation(s)
- Tong Liu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Venegas-Zamora L, Bravo-Acuña F, Sigcho F, Gomez W, Bustamante-Salazar J, Pedrozo Z, Parra V. New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Front Genet 2022; 12:792231. [PMID: 35126461 PMCID: PMC8808411 DOI: 10.3389/fgene.2021.792231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45–50% of individuals with DS. Here, we describe the genetic background of this condition (Hsa21 and non-Hsa21 genes), including the role of ncRNAs, and the relevance of these new players in the study of the pathophysiology of DS heart diseases. Additionally, we discuss several distinct pathways in cardiomyocytes which help maintain a functional heart, but that might trigger hypertrophy and oxidative stress when altered. Moreover, we highlight the importance of investigating how mitochondrial and lysosomal dysfunction could eventually contribute to understanding impaired heart function and development in subjects with the Hsa21 trisomy. Altogether, this review focuses on the newest insights about the gene expression, molecular pathways, and organelle alterations involved in the cardiac phenotype of DS.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Bravo-Acuña
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Sigcho
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Bustamante-Salazar
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| |
Collapse
|
5
|
Cejas RB, Tamaño-Blanco M, Blanco JG. Analysis of the intracellular traffic of IgG in the context of Down syndrome (trisomy 21). Sci Rep 2021; 11:10981. [PMID: 34040082 PMCID: PMC8155081 DOI: 10.1038/s41598-021-90469-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Persons with Down syndrome (DS, trisomy 21) have widespread cellular protein trafficking defects. There is a paucity of data describing the intracellular transport of IgG in the context of endosomal-lysosomal alterations linked to trisomy 21. In this study, we analyzed the intracellular traffic of IgG mediated by the human neonatal Fc receptor (FcRn) in fibroblast cell lines with trisomy 21. Intracellular IgG trafficking studies in live cells showed that fibroblasts with trisomy 21 exhibit higher proportion of IgG in lysosomes (~ 10% increase), decreased IgG content in intracellular vesicles (~ 9% decrease), and a trend towards decreased IgG recycling (~ 55% decrease) in comparison to diploid cells. Amyloid-beta precursor protein (APP) overexpression in diploid fibroblasts replicated the increase in IgG sorting to the degradative pathway observed in cells with trisomy 21. The impact of APP on the expression of FCGRT (alpha chain component of FcRn) was investigated by APP knock down and overexpression of the APP protein. APP knock down increased the expression of FCGRT mRNA by ~ 60% in both diploid and trisomic cells. Overexpression of APP in diploid fibroblasts and HepG2 cells resulted in a decrease in FCGRT and FcRn expression. Our results indicate that the intracellular traffic of IgG is altered in cells with trisomy 21. This study lays the foundation for future investigations into the role of FcRn in the context of DS.
Collapse
Affiliation(s)
- R B Cejas
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - M Tamaño-Blanco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - J G Blanco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|