1
|
Bertolesi GE, Vazhappilly ST, Hehr CL, McFarlane S. Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light. Pigment Cell Melanoma Res 2016; 29:186-98. [PMID: 26582755 DOI: 10.1111/pcmr.12442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/12/2015] [Indexed: 12/24/2022]
Abstract
Light-regulated skin colour change is an important physiological process in invertebrates and lower vertebrates, and includes daily circadian variation and camouflage (i.e. background adaptation). The photoactivation of melanopsin-expressing retinal ganglion cells (mRGCs) in the eye initiates an uncharacterized neuroendocrine circuit that regulates melanin dispersion/aggregation through the secretion of alpha-melanocyte-stimulating hormone (α-MSH). We developed experimental models of normal or enucleated Xenopus embryos, as well as in situ cultures of skin of isolated dorsal head and tails, to analyse pharmacological induction of skin pigmentation and α-MSH synthesis. Both processes are triggered by a melanopsin inhibitor, AA92593, as well as chloride channel modulators. The AA9253 effect is eye-dependent, while functional data in vivo point to GABAA receptors expressed on pituitary melanotrope cells as the chloride channel blocker target. Based on the pharmacological data, we suggest a neuroendocrine circuit linking mRGCs with α-MSH secretion, which is used normally during background adaptation.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sherene T Vazhappilly
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie L Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Jenks BG, Galas L, Kuribara M, Desrues L, Kidane AH, Vaudry H, Scheenen WJJM, Roubos EW, Tonon MC. Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research. Gen Comp Endocrinol 2011; 170:57-67. [PMID: 20888821 DOI: 10.1016/j.ygcen.2010.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 01/19/2023]
Abstract
This review gives an overview of the functioning of the hypothalamo-hypophyseal neuroendocrine interface in the pituitary neurointermediate lobe, as it relates to melanotrope cell function in two amphibian species, Rana ridibunda and Xenopus laevis. It primarily but not exclusively concerns the work of two collaborating laboratories, the Laboratory for Molecular and Cellular Neuroendocrinology (University of Rouen, France) and the Department of Cellular Animal Physiology (Radboud University Nijmegen, The Netherlands). In the course of this review it will become apparent that Rana and Xenopus have, for the most part, developed the same or similar strategies to regulate the release of α-melanophore-stimulating hormone (α-MSH). The review concludes by highlighting the molecular and cellular mechanisms utilized by thyrotropin-releasing hormone (TRH) to activate Rana melanotrope cells and the function of autocrine brain-derived neurotrophic factor (BDNF) in the regulation of Xenopus melanotrope cell function.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJJM, Kozicz T. About a snail, a toad, and rodents: animal models for adaptation research. Front Endocrinol (Lausanne) 2010; 1:4. [PMID: 22649351 PMCID: PMC3355873 DOI: 10.3389/fendo.2010.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models.
Collapse
Affiliation(s)
- Eric W. Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Bruce G. Jenks
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Miyuki Kuribara
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Wim J. J. M. Scheenen
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
4
|
Zhang H, Langeslag M, Breukels V, Jenks BG, Roubos EW, Scheenen WJJM. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. Gen Comp Endocrinol 2008; 156:104-12. [PMID: 18206885 DOI: 10.1016/j.ygcen.2007.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/23/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
We have tested the hypothesis that the type and kinetics of voltage-activated Ca(2+) channels in a neuroendocrine cell depend on the cell's long-term external input. For this purpose, the presence and kinetics of both low (LVA) and high-voltage-activated (HVA) L-type Ca(2+) channels have been assessed in melanotrope pituitary cells of the amphibian Xenopus laevis. The secretory activity of this cell type can readily be manipulated in vivo by changing the animal's environmental light condition, from a black to a white background. We here show that, compared to white background-adapted Xenopus, melanotropes from black background-adapted frogs have (1) a much larger size, as revealed by their 2.5 times larger membrane capacitance (P<0.001), (2) a 2 times higher HVA current density (P<0.05), (3) a clearly smaller Ca(2+)-dependent inactivation (10%; P<0.05), (4) L-type channels with 5 times slower activation and inactivation kinetics (P<0.05), and (5) slower kinetics of L-type channels that become faster and more similar to those in white-background adapted cells when the intracellular Ca(2+)-buffering capacity is reduced. Furthermore, white-adapted melanotropes possess LVA-type Ca(2+) channels, which are lacking from cells from black-adapted animals. The melanotrope calmodulin mRNA level does not differ between the two adaptation states. These results indicate that HVA L-type channel kinetics differ in relation to environmentally induced changes in cellular secretory state, probably mediated via intracellular Ca(2+)-buffering, whereas the occurrence of LVA Ca(2+) channels may depend on environmentally controlled channel gene expression.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Cellular Animal Physiology, EURON European Graduate School of Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Jenks BG, Kidane AH, Scheenen WJJM, Roubos EW. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. Neuroendocrinology 2007; 85:177-85. [PMID: 17389778 DOI: 10.1159/000101434] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 02/22/2007] [Indexed: 11/19/2022]
Abstract
Melanotrope cells of the amphibian pituitary pars intermedia produce alpha-melanophore-stimulating hormone (alpha-MSH), a peptide which causes skin darkening during adaptation to a dark background. The secretory activity of the melanotrope of the South African clawed toad Xenopus laevis is regulated by multiple factors, both classical neurotransmitters and neuropeptides from the brain. This review concerns the plasticity displayed in this intermediate lobe neuroendocrine interface during physiological adaptation to the environment. The plasticity includes dramatic morphological plasticity in both pre- and post-synaptic elements of the interface. Inhibitory neurons in the suprachiasmatic nucleus, designated suprachiasmatic melanotrope-inhibiting neurons (SMINs), possess more and larger synapses on the melanotrope cells in white than in black-background adapted animals; in the latter animals the melanotropes are larger and produce more proopiomelanocortin (POMC), the precursor of alpha-MSH. On a white background, pre-synaptic SMIN plasticity is reflected by a higher expression of inhibitory neuropeptide Y (NPY) and is closely associated with postsynaptic melanotrope plasticity, namely a higher expression of the NPY Y1 receptor. Interestingly, melanotrope cells in such animals also display higher expression of the receptors for thyrotropin-releasing hormone (TRH) and urocortin 1, two neuropeptides that stimulate alpha-MSH secretion. Possibly, in white-adapted animals melanotropes are sensitized to neuropeptide stimulation so that, when the toad moves to a black background, they can immediately initiate alpha-MSH secretion to achieve rapid adaptation to the new background condition. The melanotrope cell also produces brain-derived neurotrophic factor (BDNF), which is co-sequestered with alpha-MSH in secretory granules within the cells. The neurotrophin seems to control melanotrope cell plasticity in an autocrine way and we speculate that it may also control presynaptic SMIN plasticity.
Collapse
Affiliation(s)
- Bruce G Jenks
- Department of Cellular Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|