1
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
2
|
Abstract
All mammalian eggs are surrounded by a highly specialized extracellular matrix (ECM), called the zona pellucida (ZP), that functions before, during, and after fertilization. Unlike somatic cell ECM the mouse ZP is composed of three different proteins, ZP1-3, that are synthesized and secreted by growing oocytes and assembled into long interconnected fibrils. ECM or vitelline envelope (VE) that surrounds fish, reptilian, amphibian, and avian eggs also consists of a limited number of proteins all closely related to ZP1-3. Messenger RNAs encoding ZP1-3 are expressed only by growing oocytes at very high levels from single-copy genes present on different chromosomes. Processing at the amino- and carboxy-termini of nascent ZP1-3 permits secretion of mature proteins into the extracellular space and assembly into fibrils and matrix. Structural features of nascent ZP proteins prevent assembly within secretory vesicles of growing oocytes. Homozygous knockout female mice that fail to synthesize either ZP2 or ZP3 are unable to construct a ZP, ovulate few if any eggs, and are infertile. ZP1-3 have a common structural feature, the ZP domain (ZPD), that has been conserved through 600 million years of evolution and is essential for ZP protein assembly into fibrils. The ZPD consists of two subdomains, each with four conserved cysteine residues present as two intramolecular disulfides, and resembles an immunoglobulin (Ig) domain found in a wide variety of proteins that have diverse functions, from receptors to mechanical transducers. ZP2 and ZP3 function as receptors for acrosome-reacted and acrosome-intact sperm, respectively, during fertilization of ovulated eggs, but are inactivated as sperm receptors as a result of fertilization.
Collapse
Affiliation(s)
- Paul M Wassarman
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Eveline S Litscher
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
The vasorelaxant effect of mitiglinide via activation of voltage-dependent K + channels and SERCA pump in aortic smooth muscle. Life Sci 2017; 188:1-9. [PMID: 28855109 DOI: 10.1016/j.lfs.2017.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/11/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023]
Abstract
AIMS The vasorelaxant effects of the anti-diabetic drug, mitiglinide in phenylephrine (Phe)-pre-contracted aortic rings were examined. MATERIALS AND METHODS Arterial tone measurement was performed in aortic smooth muscle cells. KEY FINDINGS Mitiglinide dose-dependently induced vasorelaxation. Application of the large-conductance Ca2+-activated K+ (BKCa) channel blocker paxilline, inwardly rectifying K+ (Kir) channel blocker Ba2+, and ATP-sensitive K+ (KATP) channel blocker glibenclamide did not affect the vasorelaxant effect of mitiglinide. However, application of the voltage-dependent K+ (Kv) channel blocker 4-AP, effectively inhibited mitiglinide-induced vasorelaxation. Although pretreatment with the Ca2+ channel blocker nifedipine did not alter the mitiglinide-induced vasorelaxation, pretreatment with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor thapsigargin and cyclopiazonic acid reduced the vasorelaxant effect of mitiglinide. In addition, the vasorelaxant effect of mitiglinide was not affected by the inhibitors of adenylyl cyclase, protein kinase A, guanylyl cyclase, or protein kinase G. Elimination of the endothelium and inhibition of endothelium-dependent vasorelaxant mechanisms also did not change the vasorelaxant effect of mitiglinide. SIGNIFICANCE We proposed that mitiglinide induces vasorelaxation via activation of Kv channels and SERCA pump. However, the vasorelaxant effects of mitiglinide did not involve other K+ channels, Ca2+ channels, PKA/PKG signaling pathways, or the endothelium.
Collapse
|
4
|
Li H, Kim HW, Shin SE, Seo MS, An JR, Jung WK, Ha KS, Han ET, Hong SH, Bang H, Choi IW, Na SH, Park WS. The vasorelaxant effect of antidiabetic drug nateglinide via activation of voltage-dependent K + channels in aortic smooth muscle. Cardiovasc Ther 2017; 36. [PMID: 28834298 DOI: 10.1111/1755-5922.12299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 08/13/2017] [Indexed: 01/16/2023] Open
Abstract
AIMS We investigated the vasorelaxant effect of nateglinide and its related mechanisms using phenylephrine (Phe)-induced precontracted aortic rings. METHODS Arterial tone measurement was performed in aortic smooth muscle. RESULTS The application of nateglinide induced vasorelaxation in a concentration-dependent manner. Pretreatment with the large-conductance Ca2+ -activated K+ (BKCa ) channel inhibitor paxilline, the inwardly rectifying K+ (Kir) channel inhibitor Ba2+ , and ATP-sensitive K+ (KATP ) channel inhibitor glibenclamide did not affect the vasorelaxant effect of nateglinide. However, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (4-AP) effectively reduced the vasorelaxant effect of nateglinide. Pretreatment with the Ca2+ inhibitor nifedipine and the sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin did not change the vasorelaxant effect of nateglinide. Additionally, the vasorelaxant effect of nateglinide was not altered in the presence of an adenylyl cyclase, a protein kinase A, a guanylyl cyclase, or a protein kinase G inhibitor. The vasorelaxant effect of nateglinide was not affected by the elimination of the endothelium. In addition, pretreatment with a nitric oxide synthase inhibitor, L-NAME, and a small-conductance Ca2+ -activated K+ (SKCa ) channel inhibitor, apamin, did not change the vasorelaxant effect of nateglinide. CONCLUSION Nateglinide induced vasorelaxation via the activation of the Kv channel independent of other K+ channels, Ca2+ channels, intracellular Ca2+ ([Ca2+ ]i ), and the endothelium.
Collapse
Affiliation(s)
- Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Won Kim
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sung Eun Shin
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, South Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
5
|
Fernández S, Córdoba M. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid. Anim Reprod Sci 2017; 179:80-87. [DOI: 10.1016/j.anireprosci.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 02/07/2023]
|
6
|
Kim HW, Li H, Kim HS, Shin SE, Jung WK, Ha KS, Han ET, Hong SH, Choi IW, Firth AL, Bang H, Park WS. The anti-diabetic drug repaglinide induces vasorelaxation via activation of PKA and PKG in aortic smooth muscle. Vascul Pharmacol 2016; 84:38-46. [PMID: 27435474 DOI: 10.1016/j.vph.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Abstract
We investigated the vasorelaxant effect of repaglinide and its related signaling pathways using phenylephrine (Phe)-induced pre-contracted aortic rings. Repaglinide induced vasorelaxation in a concentration-dependent manner. The repaglinide-induced vasorelaxation was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor (L-NAME) and a small-conductance Ca(2+)-activated K(+) (SKCa) channel inhibitor (apamin) did not alter the vasorelaxant effect of repaglinide on endothelium-intact arteries. Pretreatment with an adenylyl cyclase inhibitor (SQ 22536) or a PKA inhibitor (KT 5720) effectively reduced repaglinide-induced vasorelaxation. Also, pretreatment with a guanylyl cyclase inhibitor (ODQ) or a PKG inhibitor (KT 5823) inhibited repaglinide-induced vasorelaxation. However, pretreatment with a voltage-dependent K(+) (Kv) channel inhibitor (4-AP), ATP-sensitive K(+) (KATP) channel inhibitor (glibenclamide), large-conductance Ca(2+)-activated K(+) (BKCa) channel inhibitor (paxilline), or the inwardly rectifying K(+) (Kir) channel inhibitor (Ba(2+)) did not affect the vasorelaxant effect of repaglinide. Furthermore, pretreatment with a Ca(2+) inhibitor (nifedipine) and a sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor (thapsigargin) did not affect the vasorelaxant effect of repaglinide. The vasorelaxant effect of repaglinide was not affected by elevated glucose (50mM). Based on these results, we conclude that repaglinide induces vasorelaxation via activation of adenylyl cyclase/PKA and guanylyl cyclase/PKG signaling pathways independently of the endothelium, K(+) channels, Ca(2+) channels, and intracellular Ca(2+) ([Ca(2+)]i).
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Han Sol Kim
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Sung Eun Shin
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan 614-735, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea.
| |
Collapse
|
7
|
Lackey BR, Gray SL. Identification of kinases, phosphatases, and phosphorylation sites in human and porcine spermatozoa. Syst Biol Reprod Med 2015; 61:345-52. [PMID: 26467841 DOI: 10.3109/19396368.2015.1089335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple inter-connected signaling pathways, involving kinases and phosphatases, form a framework that controls sperm motility, function, and fertilizing ability. Methods that give a broad view of the proteomic landscape may prove valuable in uncovering new crosstalk connections, as well as in discovering new proteins within this regulatory framework. A multi-immunoblotting strategy was utilized to evaluate this concept on human and porcine spermatozoa samples. In human and porcine spermatozoa, a diversity of kinases were identified including protein kinase A (PKA), protein kinase B (PKB), isoforms of protein kinase C (PKC), calmodulin-dependent kinases (CAMK), casein kinase (CK), and isoforms of glycogen synthase kinase (GSK3). Several phosphatases, such as protein phosphatase (PP)-1, PP2A, PP2C, and mitogen activated protein kinase (MAPK) phosphatase (MKP-1), were identified in human spermatozoa. The phosphorylation epitopes recognized belonged to members of the MAPK family, in addition to α and β isoforms of GSK3 and cAMP response element binding protein (CREB). Proteomic approaches that allow a broad view may aid in understanding the crosstalk between signaling systems in spermatozoal physiology.
Collapse
Affiliation(s)
- Brett R Lackey
- a Endocrine Physiology Laboratory, AVS Department, Clemson University , Clemson , SC , USA
| | - Sandra L Gray
- a Endocrine Physiology Laboratory, AVS Department, Clemson University , Clemson , SC , USA
| |
Collapse
|