1
|
Wu L, Wu M, Li Y, Xin Q, Wang Y, Shi X, Li X. R-spondin1 plays an indispensable role in ovarian development of Qi River crucian carp (Carassius auratus) by regulating estrogen synthesis. Theriogenology 2025; 235:134-144. [PMID: 39826263 DOI: 10.1016/j.theriogenology.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
R-spondin1 (Rspo1) is a member of the secreted furin-like domain-containing protein family, and it is recognized for its significance in mammalian ovarian development. However, its role in teleost ovarian development remains largely uninvestigated. The Qi River crucian carp (Carassius auratus) is a species capable of gynogenesis, and it encounters challenges of premature ovarian maturation in aquaculture settings. Previous research established the essential involvement of Rspo1 in oocyte growth in Qi River crucian carp, but the precise molecular mechanisms underlying its role remain poorly understood. In this study, we categorized the pre-spawning ovarian development process of premature Qi River crucian carp into five stages through meticulous examination of morphology and histology. Immunofluorescence analysis revealed colocalization of Rspo1 with Vasa protein in oogonia, primary growth stage, and cortical vacuolar stage oocytes, and it was also detected in somatic cells. After a 60-day period of RNA interference via injection of Rspo1 double-stranded RNA into late-previtellogenesis stage ovaries, a substantial proportion of oocytes were arrested in the primary growth stage and exhibited a marked reduction in the expression of germ cell marker genes and an increase in apoptosis signaling. RNA-sequencing and real-time PCR analyses indicated a potential association between genes involved in hormone synthesis, lipid storage, and cell proliferation with ovary development in Qi River crucian carp. Furthermore, a significant decrease in levels of serum estrogens and vitellogenin was observed after Rspo1 knockdown. Dual-fluorescence in situ hybridization analysis demonstrated co-expression of Rspo1 with cyp19a1a in ovarian germ and surrounding somatic cells. Furthermore, results of a promoter assay indicated that Rspo1 can dose-dependently activate cyp19a1a expression. Collectively, these findings suggest that Rspo1 plays a role in ovarian development and oocyte growth by modulating cyp19a1a expression and influencing estrogen synthesis. These results provide valuable insights into the molecular mechanisms underlying the involvement of Rspo1 in ovarian development in Qi River crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, PR China.
| | - Mengfan Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongjing Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, PR China
| | - Qingqing Xin
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yuchi Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xi Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, PR China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, PR China.
| |
Collapse
|
2
|
Yang C, Zhao Y, Zhao W, Huang H, Zhang Q, Liu J. CeRNA profiling and the role in regulating gonadal development in gold pompano. BMC Genomics 2025; 26:43. [PMID: 39819203 PMCID: PMC11737251 DOI: 10.1186/s12864-025-11220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The golden pompano (Trachinotus ovatus) is an economically significant warm-water aquaculture species in China. The time required for sexual maturity of T. ovatus is relatively long. Consequently, it has prompted researchers to investigate gonadal development process of this fish. To gain further insight into the function of competing endogenous RNA (ceRNA) in the gonads of T. ovatus and the regulatory mechanism of the ceRNA network, whole transcriptome libraries were constructed from the testes and ovaries. RESULTS Overall, a total of 96 differentially expressed microRNAs (DE-miRNAs), 2,338 differentially expressed messenger RNAs (DE-mRNAs), 973 differentially expressed long non-coding RNAs (DE-lncRNAs), and 94 differentially expressed circular RNAs (DE-circRNAs) were identified. Additionally, a ceRNA network was constructed, and enrichment analysis confirmed the involvement of numerous pathways in reproduction and gonadal development, including the TGF-β signaling pathway and GnRH signaling pathway. The ceRNA network analysis revealed that the oni-let-7d-1-p3 and PC-3p-112794_13 may play significant roles in T. ovatus gonadal development. And we have observed a possible relationship related to gonadal development involving R-spondin-1 (Rspo1), oni-let-7d-1-p3, and MSTRG.14909.1 (lnc-TGFβR). Dual-luciferase gene reporter system and fluorescence in situ hybridization analyses preliminary verified the regulation relationship between Rspo1 and oni-let-7d-1-p3, as well as lnc-TGFβR and oni-let-7d-1-p3 in the cytoplasm of sertoli cells. CONCLUSION It is hypothesized that the lnc-TGFβR functions as a sponge for oni-let-7d-1-p3, participating in regulating the process of testis development. These findings could enhance our understanding of ncRNAs in gonadal development. It also provides new insight into the function of ncRNAs and the regulatory relationship of ceRNA between males and females. These results might contribute to discussions on the regulation of ncRNA during gametogenesis.
Collapse
Affiliation(s)
- Changcan Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China
| | - Yijun Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China
| | - Wendong Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China
| | - Hai Huang
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Jinxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao / Sanya, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- Hainan Seed Industry Laboratory, Sanya, China.
| |
Collapse
|
3
|
Puthumana J, Chandrababu A, Sarasan M, Joseph V, Singh ISB. Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech 2024; 14:44. [PMID: 38249355 PMCID: PMC10796887 DOI: 10.1007/s13205-023-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
Conventional selective breeding in aquaculture has been effective in genetically enhancing economic traits like growth and disease resistance. However, its advances are restricted by heritability, the extended period required to produce a strain with desirable traits, and the necessity to target multiple characteristics simultaneously in the breeding programs. Genome editing tools like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) are promising for faster genetic improvement in fishes. CRISPR/Cas9 technology is the least expensive, most precise, and well compatible with multiplexing of all genome editing approaches, making it a productive and highly targeted approach for developing customized fish strains with specified characteristics. As a result, the use of CRISPR/Cas9 technology in aquaculture is rapidly growing, with the main traits researched being reproduction and development, growth, pigmentation, disease resistance, trans-GFP utilization, and omega-3 metabolism. However, technological obstacles, such as off-target effects, ancestral genome duplication, and mosaicism in founder population, need to be addressed to achieve sustainable fish production. Furthermore, present regulatory and risk assessment frameworks are inadequate to address the technical hurdles of CRISPR/Cas9, even though public and regulatory approval is critical to commercializing novel technology products. In this review, we examine the potential of CRISPR/Cas9 technology for the genetic improvement of edible fish, the technical, ethical, and socio-economic challenges to using it in fish species, and its future scope for sustainable fish production.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| |
Collapse
|
4
|
Cao J, Zhou T, Chen G, Zou G, Liang H. Effect of Exogenous Hormone on R-Spondin 2 ( Rspo2) and R-Spondin 3 ( Rspo3) Gene Expression and Embryo Development in Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Genes (Basel) 2023; 14:1466. [PMID: 37510371 PMCID: PMC10379378 DOI: 10.3390/genes14071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Chinese soft-shelled turtle, Pelodiscus sinensis, is an important aquaculture species in China that exhibits distinct sexual dimorphism; male individuals are economically more valuable than females. In vertebrates, several R-spondin family proteins have been associated with sex differentiation mechanisms; however, their involvement in P. sinensis sex differentiation is unclear. Exogenous hormones such as estradiol (E2) also influence the sex differentiation of P. sinensis and induce sexual reversal. In the present study, we investigated the effects of E2 on the embryonic development of P. sinensis and the expression of R-spondin 2 (Rspo2) and R-spondin 3 (Rspo3). We amplified P. sinensis Rspo2 and Rspo3 and analyzed their expression patterns in different tissues. Comparative analyses with protein sequences from other species elucidated that P. sinensis RSPO2 and RSPO3 sequences were conserved. Moreover, phylogenetic analysis revealed that P. sinensis RSPO2 and RSPO3 were closely related to these two proteins from other turtle species. Furthermore, Rspo2 and Rspo3 were highly expressed in the brain and gonads of adult turtles, with significantly higher expression in the ovaries than in the testes (p < 0.05). We also evaluated the expression of Rspo2 and Rspo3 after the administration of three concentrations of E2 (1.0, 5.0, and 10.0 mg/mL) to turtle eggs during embryonic development. The results revealed that E2 upregulated Rspo2 and Rspo3, and the expression trends varied during different embryonic developmental stages (stages 13-20). These findings lay the groundwork for future investigations into the molecular mechanisms involved in the sex differentiation of Chinese soft-shelled turtles.
Collapse
Affiliation(s)
- Jizeng Cao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guobin Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Hongwei Liang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| |
Collapse
|
5
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
6
|
Brown MS, Evans BS, Afonso LOB. Developmental changes in gene expression and gonad morphology during sex differentiation in Atlantic salmon (Salmo salar). Gene 2022; 823:146393. [PMID: 35248662 DOI: 10.1016/j.gene.2022.146393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
The Atlantic salmon (Salmo salar) is a globally important species for its value in fisheries and aquaculture, and as a research model. In order to characterise aspects of sex differentiation at the morphological and mRNA level in this species, the present study examined developmental changes in gonad morphology and gene expression in males and females between 0 and 79 days post hatch (dph). Morphological differentiation of the ovary (indicated by the formation of germ cell cysts) became apparent from 52 dph. By 79 dph, ovarian phenotype was evident in 100% of genotypic females. Testes remained in an undifferentiated-like state throughout the experiment, containing germ cells dispersed singularly within the gonadal region distal to the mesentery. There were no significant sex-related differences in gonad cross-section size, germ cell number or germ cell diameter during the experiment. The expression of genes involved in teleost sex differentiation (anti-müllerian hormone (amh), cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a), forkhead box L2a (foxl2a), gonadal soma-derived factor (gsdf), r-spondin 1 (rspo1), sexually dimorphic on the Y chromosome (sdY)), retinoic acid-signalling (aldehyde dehydrogenase 1a2 (aldh1a2), cytochrome P450 family 26 a1 (cyp26a1), cytochrome P450 family 26 b1 (cyp26b1), t-box transcription factor 1 (tbx1a)) and neuroestrogen production (cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b)) was investigated. Significant sex-related differences were observed only for the expression of amh, cyp19a1a, gsdf and sdY. In males, amh, gsdf and sdY were upregulated from 34, 59 and 44 dph respectively. In females, cyp19a1a was upregulated from 66 dph. Independent of sex, foxl2a expression was highest at 0 dph and had reduced ∼ 47-fold by the time of morphological sex differentiation at 52 dph. This study provides new insights into the timing and sequence of some physiological changes associated with sex differentiation in Atlantic salmon. These findings also reveal that some aspects of the mRNA sex differentiation pathways in Atlantic salmon are unique compared to other teleost fishes, including other salmonids.
Collapse
Affiliation(s)
- Morgan S Brown
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Warrnambool Campus, Warrnambool, Victoria 3280, Australia.
| | - Brad S Evans
- Tassal Operations, Hobart, Tasmania 7000, Australia.
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| |
Collapse
|
7
|
Yang L, Zhang X, Liu S, Zhao C, Miao Y, Jin L, Wang D, Zhou L. Cyp17a1 is Required for Female Sex Determination and Male Fertility by Regulating Sex Steroid Biosynthesis in Fish. Endocrinology 2021; 162:6377406. [PMID: 34581801 DOI: 10.1210/endocr/bqab205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/29/2022]
Abstract
In teleost fish, sex steroids are involved in sex determination, sex differentiation, and fertility. Cyp17a1 (Cytochrome P450 family 17 subfamily A member 1) is thought to play essential roles in fish steroidogenesis. Therefore, to further understand its roles in steroidogenesis, sex determination, and fertility in fish, we constructed a cyp17a1 gene mutant in Nile tilapia (Oreochromis niloticus). In XX fish, mutation of the cyp17a1 gene led to a female-to-male sex reversal with a significant decline in 17β-estradiol (E2) and testosterone (T) production, and ectopic expression of male-biased markers (Dmrt1 and Gsdf) in gonads from the critical window of sex determination. Sex reversal was successfully rescued via T or E2 administration, and ovarian characteristics were maintained after termination of E2 supplementation in the absence of endogenous estrogen production in cyp17a1-/- XX fish. Likewise, deficiencies in T and 11-ketotestosterone (11-KT) production in both cyp17a1-/- XX sex-reversed males and cyp17a1-/- XY mutants resulted in meiotic initiation delays, vas deferens obstruction and sterility due to excessive apoptosis and abnormal mitochondrial morphology. However, 11-KT treatment successfully rescued the dysspermia to produce normal sperm in cyp17a1-/- male fish. Significant increases in gonadotropic hormone (gth) and gth receptors in cyp17a1-/- mutants may excessively upregulate steroidogenic gene expression in Leydig cells through a feedback loop. Taken together, our findings demonstrate that Cyp17a1 is indispensable for E2 production, which is fundamental for female sex determination and differentiation in XX tilapia. Additionally, Cyp17a1 is essential for T and 11-KT production, which further promotes spermatogenesis and fertility in XY males.
Collapse
Affiliation(s)
- Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xuefeng Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shujun Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chenhua Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yiyang Miao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Alvi SM, Zayed Y, Malik R, Peng C. The emerging role of microRNAs in fish ovary: A mini review. Gen Comp Endocrinol 2021; 311:113850. [PMID: 34245767 DOI: 10.1016/j.ygcen.2021.113850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional levels. It is now well established that miRNAs are crucial regulators of many developmental and physiological processes, including reproduction. In teleosts, expression profiling studies have shown that miRNAs are expressed in the fish ovary and their levels are regulated during follicle development and by hormones. Using CRISPR/Cas9 mediated gene knockout strategies, several recent studies have provided strong evidence that miR-202 and miR-200s on chromosome 23 play critical roles in regulating ovarian development, oogenesis, and ovulation. In this mini review, we provide a brief overview of canonical miRNA biogenesis and functions; summarize miRNAs that are expressed in fish ovary; and discuss the emerging role of miRNAs in regulating fish ovarian functions.
Collapse
Affiliation(s)
- Sajid M Alvi
- Department of Biology, York University, Toronto, ON, Canada
| | - Yara Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Ramsha Malik
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada; Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada.
| |
Collapse
|
9
|
Lu J, Fang W, Huang J, Li S. The application of genome editing technology in fish. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:326-346. [PMID: 37073287 PMCID: PMC10077250 DOI: 10.1007/s42995-021-00091-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade. As a powerful tool to decipher genome data at the molecular biology level, genome editing technology has made important contributions to elucidating many biological problems. Currently, the three most widely used genome editing technologies include: zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR). Researchers are still striving to create simpler, more efficient, and accurate techniques, such as engineered base editors and new CRISPR/Cas systems, to improve editing efficiency and reduce off-target rate, as well as a near-PAMless SpCas9 variants to expand the scope of genome editing. As one of the important animal protein sources, fish has significant economic value in aquaculture. In addition, fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates. Consequently, genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture. In this review, we focus on the application of genome editing technologies in fish species detailing growth, gender, and pigmentation traits. In addition, we have focused on the construction of a zebrafish (Danio rerio) disease model and high-throughput screening of functional genes. Finally, we provide some of the future perspectives of this technology.
Collapse
Affiliation(s)
- Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
10
|
Zhang Y, Xiao L, Sun W, Li P, Zhou Y, Qian G, Ge C. Knockdown of R-spondin1 leads to partial sex reversal in genetic female Chinese soft-shelled turtle Pelodiscus sinensis. Gen Comp Endocrinol 2021; 309:113788. [PMID: 33865850 DOI: 10.1016/j.ygcen.2021.113788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Chinese soft-shelled turtle Pelodiscus sinensis is an important aquaculture species in China, the male individual being more valuable in aquaculture because of its larger body size, higher growth rate and less fat compared with females. Understanding the mechanism of ovarian differentiation and development is crucial for the production of mono-sex male offspring. However, little is known about the molecular mechanism underlying turtle ovarian differentiation. Here, we characterized the Rspo1 gene, an upstream regulator of vertebrate female sexual differentiation, in P. sinensis. The messenger RNA of Rspo1 was initially expressed at stage 14, preceding gonadal sex differentiation, and exhibited a sexually dimorphic expression pattern throughout the sex determination and gonadal differentiation periods. Rspo1 was rapidly downregulated during aromatase inhibitor-induced female-to-male sex reversal, which occurred prior to gonadal differentiation. Rspo1 loss of function by RNA interference led to partial female-to-male sex reversal, with masculinized changes in the phenotype of gonads, the distribution of germ cells and the expression of testicular regulators. Collectively, these findings suggest that Rspo1 is necessary for primary female sexual differentiation in P. sinensis. This study demonstrates for the first time the functional role of Rspo1 in reptilian sex determination, and is of fundamental significance for the production of fertile pseudo-female parents and mono-sex male offspring of P.sinensis.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Xiao
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Pan Li
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yingjie Zhou
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Chutian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
11
|
Huang G, Cao J, Gao F, Liu Z, Lu M, Chen G. R-spondin1 in loach (Misgurnus anguillicaudatus): Identification, characterization, and analysis of its expression patterns and DNA methylation in response to high-temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110569. [PMID: 33515787 DOI: 10.1016/j.cbpb.2021.110569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
With a well-understood function in mammals, R-spondin1 (Rspo1) is an important regulator of ovarian development via the Wnt/β-catenin pathway. Rspo1 deficiency causes retardation of ovarian development in XX fish, and increases Rspo1 function induces femininity and sex reversal in XY fish. In this study, Rspo1 was successfully cloned from loach (Misgurnus anguillicaudatus), and its expression profile was analyzed. The full-length cDNA of Misgurnus anguillicaudatus Rspo1 (MaRspo1) comprised 1322 bp and included an open reading frame (ORF) of 795 bp, which encoded a predicted polypeptide measuring 264 amino acids in length. Phylogenetic and gene structure analyses showed a highly conserved sequence of MaRspo1 (identical to the Rspo1 genes of other species), consisting of an N-terminal signal peptide (SP), two furin-like cysteine-rich domains (FU1 and FU2), a thrombospondin type 1 repeat (TSP1) and a C-terminal region. Real-time PCR revealed the female-biased expression profile of MaRspo1, with the highest expression level among tested tissues detected in ovary. Investigation of MaRspo1 expression levels throughout the early development stage (10-60 days post hatching) under three temperature treatments (25 °C, 28 °C, and 31 °C) revealed significantly differential expression of MaRspo1 among the three temperature groups, with decreased MaRspo1 expression in the high-temperature (31 °C) group. The results of DNA methylation analysis indicated that exposure to high temperature during early development can increase the average promoter methylation level of MaRspo1 in both females and males. Taken together, the results of this study provide the basis for the further investigation of the molecular mechanism of Rspo1 in response to temperature.
Collapse
Affiliation(s)
- Guiyun Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China.
| |
Collapse
|
12
|
Li M, Liu X, Dai S, Xiao H, Qi S, Li Y, Zheng Q, Jie M, Cheng CHK, Wang D. Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cell Mol Life Sci 2020; 77:4921-4938. [PMID: 31955242 PMCID: PMC11104970 DOI: 10.1007/s00018-019-03439-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/11/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023]
Abstract
A novel insulin-like growth factor (igf3), which is exclusively expressed in the gonads, has been widely identified in fish species. Recent studies have indicated that Igf3 regulates spermatogonia proliferation and differentiation in zebrafish; however, detailed information on the role of this Igf needs further in vivo investigation. Here, using Nile tilapia (Oreochromis niloticus) as an animal model, we report that igf3 is required for spermatogenesis and reproduction. Knockout of igf3 by CRISPR/Cas9 severely inhibited spermatogonial proliferation and differentiation at 90 days after hatching, the time critical for meiosis initiation, and resulted in less spermatocytes in the mutants. Although spermatogenesis continued to occur later, more spermatocytes and less spermatids were observed in the igf3-/- testes when compared with wild type of testes at adults, indicating that Igf3 regulates spermatocyte to spermatid transition. Importantly, a significantly increased occurrence of apoptosis in spermatids was observed after loss of Igf3. Therefore, igf3-/- males were subfertile with drastically reduced semen volume and sperm count. Conversely, the overexpression of Igf3 in XY tilapia enhanced spermatogenesis leading to more spermatids and sperm count. Transcriptomic analysis revealed that the absence of Igf3 resulted in dysregulation of many genes involved in cell cycle, meiosis and pluripotency regulators that are critical for spermatogenesis. In addition, in vitro gonadal culture with 17α-methyltetosterone (MT) and 11-ketotestosterone (11-KT) administration and in vivo knockout of cyp11c1 demonstrated that igf3 expression is regulated by androgens, suggesting that Igf3 acts downstream of androgens in fish spermatogenesis. Notably, the igf3 knockout did not affect body growth, indicating that this Igf specifically functions in reproduction. Taken together, our data provide genetic evidence for fish igf3 in the regulation of reproductive capacity by controlling spermatogenesis.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuangshuang Qi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yibing Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mimi Jie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
14
|
Yáñez JM, Joshi R, Yoshida GM. Genomics to accelerate genetic improvement in tilapia. Anim Genet 2020; 51:658-674. [PMID: 32761644 DOI: 10.1111/age.12989] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Selective breeding of tilapia populations started in the early 1990s and over the past three decades tilapia has become one of the most important farmed freshwater species, being produced in more than 125 countries around the globe. Although genome assemblies have been available since 2011, most of the tilapia industry still depends on classical selection techniques using mass spawning or pedigree information to select for growth traits with reported genetic gains of up to 20% per generation. The involvement of international breeding companies and research institutions has resulted in the rapid development and application of genomic resources in the last few years. GWAS and genomic selection are expected to contribute to uncovering the genetic variants involved in economically relevant traits and increasing the genetic gain in selective breeding programs, respectively. Developments over the next few years will probably focus on achieving a deep understanding of genetic architecture of complex traits, as well as accelerating genetic progress in the selection for growth-, quality- and robustness-related traits. Novel phenotyping technologies (i.e. phenomics), lower-cost whole-genome sequencing approaches, functional genomics and gene editing tools will be crucial in future developments for the improvement of tilapia aquaculture.
Collapse
Affiliation(s)
- J M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago, 8820808, Chile.,Núcleo Milenio INVASAL, Casilla 160-C, Concepción, Chile
| | - R Joshi
- GenoMar Genetics AS, Bolette Brygge 1, Oslo, 0252, Norway
| | - G M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago, 8820808, Chile
| |
Collapse
|
15
|
Gupta YR, Senthilkumaran B. Common carp pentraxin gene: Evidence for its role in ovarian differentiation and growth. Gen Comp Endocrinol 2020; 290:113398. [PMID: 31981692 DOI: 10.1016/j.ygcen.2020.113398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/25/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022]
Abstract
Pentraxins (PTX), belong to an evolutionarily conserved family, containing a PTX protein domain, having role in acute immunological responses and fertility in higher vertebrates. However, information regarding the action of ptx on reproduction is extremely limited in fish. To study this, ptx cDNA was cloned for downstream analysis. Tissue distribution and ontogeny expression analysis indicated the prevalence of ptx in ovary. Varied phase-wise expression during carp ovarian cycle and elevated ptx expression after human chorionic gonadotropin induction, in vitro and in vivo, indicated probable regulation of gonadotropin. In situ hybridization and immunohistochemistry revealed the presence of ptx transcript and protein in the follicular layer of stage-III/IV oocytes indicating a role in ovarian growth. To assess the functional significance of ptx, transient silencing was performed using follicular primary cell culture, in vitro and in common carp, in vivo, through ovary-targeted injection of PEI-siRNA. Transient silencing of ptx-siRNA reduced the expression of various genes/factors related to oogenesis such as transcription factors, several steroidogenic enzymes, and esrs genes. These alterations in expression suggested a plausible role for ptx in ovarian steroidogenesis either, directly or indirectly, which is evident from the changes in the serum estradiol-17β (E2) and 17α,20β-dihydroxyprogesterone levels. Furthermore, downregulation of aromatase activity was also noticed after transient silencing. Increased ptx expression after E2 induced sex reversal to juvenile carp showed the correlative role of ptx during ovarian differentiation and development. Taken together, these findings suggest that ptx exerts an important role during ovarian growth, maturation and/or recrudescence of common carp.
Collapse
Affiliation(s)
- Yugantak Raj Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
16
|
Zhang X, Zhou J, Li L, Huang W, Ahmad HI, Li H, Jiang H, Chen J. Full-length transcriptome sequencing and comparative transcriptomic analysis to uncover genes involved in early gametogenesis in the gonads of Amur sturgeon ( Acipenser schrenckii). Front Zool 2020; 17:11. [PMID: 32308726 PMCID: PMC7147073 DOI: 10.1186/s12983-020-00355-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sturgeons (Acipenseriformes) are polyploid chondrostean fish that constitute an important model species for studying development and evolution in vertebrates. To better understand the mechanisms of reproduction regulation in sturgeon, this study combined PacBio isoform sequencing (Iso-Seq) with Illumina short-read RNA-seq methods to discover full-length genes involved in early gametogenesis of the Amur sturgeon, Acipenser schrenckii. RESULTS A total of 50.04 G subread bases were generated from two SMRT cells, and herein 164,618 nonredundant full-length transcripts (unigenes) were produced with an average length of 2782 bp from gonad tissues (three testes and four ovaries) from seven 3-year-old A. schrenckii individuals. The number of ovary-specific expressed unigenes was greater than those of testis (19,716 vs. 3028), and completely different KEGG pathways were significantly enriched between the ovary-biased and testis-biased DEUs. Importantly, 60 early gametogenesis-related genes (involving 755 unigenes) were successfully identified, and exactly 50% (30/60) genes of those showed significantly differential expression in testes and ovaries. Among these, the Amh and Gsdf with testis-biased expression, and the Foxl2 and Cyp19a with ovary-biased expression strongly suggested the important regulatory roles in spermatogenesis and oogenesis of A. schrenckii, respectively. We also found the four novel Sox9 transcript variants, which increase the numbers of regulatory genes and imply function complexity in early gametogenesis. Finally, a total of 236,672 AS events (involving 36,522 unigenes) were detected, and 10,556 putative long noncoding RNAs (lncRNAs) and 4339 predicted transcript factors (TFs) were also respectively identified, which were all significantly associated with the early gametogenesis of A. schrenckii. CONCLUSIONS Overall, our results provide new genetic resources of full-length transcription data and information as a genomic-level reference for sturgeon. Crucially, we explored the comprehensive genetic characteristics that differ between the testes and ovaries of A. schrenckii in the early gametogenesis stage, which could provide candidate genes and theoretical basis for further the mechanisms of reproduction regulation of sturgeon.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Hafiz Ishfaq Ahmad
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Huiming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| |
Collapse
|
17
|
Gupta YR, Senthilkumaran B. Identification, expression profiling and localization of thoc in common carp ovary: Influence of thoc3-siRNA transient silencing. Gene 2020; 732:144350. [PMID: 31935505 DOI: 10.1016/j.gene.2020.144350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/30/2022]
Abstract
THO complex is a multisubunit family with a function in transcription and mRNA export. In the present study, transcripts of THO complex (thoc) were identified in developing ovary of common carp and their role during ovarian development and growth has been characterized for the first time in a teleost using expression profiling and transient siRNA silencing. Thoc expression revealed a spatiotemporal pattern in the gonads with high levels at 120 days post-hatch, with moderately high levels thereafter. In situ hybridization and immunohistochemical localization revealed the presence of thoc3 in follicular layer of stage-III/IV oocytes. High levels of thoc3, thoc5, and thoc7 genes in the follicular layer suggest a possible role in ovarian growth. Reduced levels of serum estradiol-17β and 17α, 20β-dihydroxypregn-4-en-3-one after thoc3 transient silencing indicated differential action on steroidogenic enzyme, transcription factor, and growth factor genes. Furthermore, transient silencing of thoc3, in vivo and in vitro, downregulated ad4bp/sf1, amh, cyp19a1a, foxl2, hsd3b, hsd11b1, hsd20b, hsd17b1, rspo1, and vtg. Incidentally, gdf9 and igf1 were upregulated, while no change was seen in esr1/2, nanos, and vasa. These observations imply that thoc3 seems to regulate ovarian function including steroidogenesis, either directly or indirectly.
Collapse
Affiliation(s)
- Yugantak Raj Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
18
|
Wu L, Li Y, Xu Y, Li Y, Wang L, Ma X, Liu H, Li X, Zhou L. Cloning and characterization of wnt4a gene in a natural triploid teleost, Qi river crucian carp (Carassius auratus). Gen Comp Endocrinol 2019; 277:104-111. [PMID: 30923007 DOI: 10.1016/j.ygcen.2019.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 03/24/2019] [Indexed: 10/27/2022]
Abstract
WNT4 (wingless-type MMTV integration site family, member 4) plays a key role in the ovarian differentiation and development in mammals. However, the possible roles of Wnt4 during gonadal differentiation and development need further clarification in teleosts. In this study, we cloned and characterized the full-length cDNA of Qi river crucian carp (Carassius auratus) wnt4a gene (CA-wnt4a). The cDNA of CA-wnt4a is 2337 bp, including the ORF of 1059 bp, encoding a putative protein with a transmembrane domain and a WNT family domain. Sequence and phylogenetic analyses revealed that the CA-Wnt4a identified is a genuine Wnt4a. Tissue distribution analysis showed that CA-wnt4a is expressed in all the tissues examined, including ovary. CA-wnt4a undergoes a stepwise increase in the embryonic stages, suggesting that CA-wnt4a might be involved in the early developmental stage. Ontogenic analysis demonstrated that CA-wnt4a expression is upregulated in the ovaries at 30-50 days after hatching (dah), the critical period of sex determination/differentiation in Qi river crucian carp. From 90 dah, the expression of CA-wnt4a was gradually downregulated in the developing ovaries. Immunohistochemistry demonstrated that CA-Wnt4a was expressed in the somatic and germ cells of the ovary by 30 dah, thereafter, positive signals of Wnt4a were detected in the somatic cells, oogonia and primary growth oocytes from 60 dah. In the sex-reversed testis induced by letrozole treatment, the expression level of CA-wnt4a was significantly downregulated. When CA-wnt4a expression was inhibited by injection of FH535 (an inhibitor of canonical Wnt/β-catenin signal pathway) in the ovaries, levels of cyp19a1a, foxl2 mRNA were significantly downregulated, while sox9b and cyp11c1 were upregulated, which suggested that together with Foxl2-leading estrogen pathway, CA-wnt4a signaling pathway might be involved in ovarian differentiation and repression of the male pathway gene expression in Qi river crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yongjing Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yufeng Xu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yanfeng Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
19
|
Cruz Vieira AB, Weber AA, Ribeiro YM, Luz RK, Bazzoli N, Rizzo E. Influence of salinity on spermatogenesis in adult Nile tilapia (Oreochromis niloticus) testis. Theriogenology 2019; 131:1-8. [PMID: 30921633 DOI: 10.1016/j.theriogenology.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 01/12/2023]
Abstract
Continental waters salinisation is a global threat that has grown because of climate change and human activities, but little is known about how and what biological tracts are affected. The aim of this study was to investigate the influence of different water salinities on the expression of HSP70, PCNA and caspase-3 during spermatogenesis of Nile tilapia. Adult males were submitted to four salinity treatments: (S0) fresh water, (S7) 7 g L-1, (S14) 14 g L-1, and (S21) 21 g L-1 for 1, 4, and 9 days. All specimens were in spermatogenic activity and the highest values of the gonadosomatic index (GSI) occurred in the S0 and S7. In the morphometric analysis, spermatocytes were the most frequent germ cell detected in all treatments (>50%) and spermatids achieved about 20% of the testicular proportion, with few variations among treatments. Spermatozoa were significantly reduced only in S14 compared to S7. Leydig cells were significantly increased in S14 when compared to S7 but plasma concentrations of 11-KT showed no significant difference among treatments. ELISA assay showed higher testicular expression of HSP70 at 1 day in all groups, followed by a significant decrease at days 4 and 9 in S14 and S21. The expression of PCNA was significantly lower while the activity of caspase-3 was higher in S14 and S21 when compared to S0 and S7. These results indicate that higher salinities in S14 and S21 interfere with the relationship between testicular HSP70, PCNA, and caspase-3, but with few effects over spermatogenesis dynamics of Nile tilapia.
Collapse
Affiliation(s)
- Augusto Bicalho Cruz Vieira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Caixa Postal 486, 30161-970, Minas Gerais, Brazil
| | - André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Caixa Postal 486, 30161-970, Minas Gerais, Brazil
| | - Yves Moreira Ribeiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Caixa Postal 486, 30161-970, Minas Gerais, Brazil
| | - Ronald Kennedy Luz
- Laboratório de Aquacultura, Escola de Veterinária, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Caixa Postal 567, 30123-970, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-Graduação em Zoologia dos Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Caixa Postal 500, 30535-610, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Caixa Postal 486, 30161-970, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Liang H, Meng Y, Cao L, Li X, Zou G. Effect of exogenous hormones on R-spondin 1 (RSPO1) gene expression and embryo development in Pelodiscus sinensis. Reprod Fertil Dev 2019; 31:1425-1433. [DOI: 10.1071/rd19045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/24/2019] [Indexed: 11/23/2022] Open
Abstract
Little is known about sex determination and differentiation in the Chinese soft-shelled turtle Pelodiscus sinensis. R-Spondin 1 (RSPO1), a candidate sex-determining gene, is an important regulator of ovarian differentiation in animals. Exogenous drugs can affect sex differentiation. In this study we cloned the RSPO1 gene from P. sinensis (psRSPO1) and analysed its expression profile. The psRSPO1 gene exhibited sequence identity with RSPO1 genes from other species. RSPO1 protein-based phylogenetic analysis showed that psRSPO1 in P. sinensis is closely related to RSPO1 proteins from other turtles. psRSPO1 showed abundant expression in adult brain and gonads, with higher levels in females than males. We also evaluated the effects of three finaconcentration of 2.5, 5.0 and 10mgmL−1 exogenous oestradiol (E2) and aromatase inhibitor (letrozole) on the expression of psRSPO1, external embryo morphology, growth status of embryos and the sex ratio when the drugs were injected to eggs during incubation. The expression of psRSPO1 was upregulated and downregulated by exogenous oestradiol and letrozole respectively, despite inconsistent expression trends at different embryo development times. External embryo morphology, growth status and sex ratio were affected by both exogenous oestradiol and the aromatase inhibitor. Feminisation was induced by oestradiol, but inhibited by letrozole. These results will contribute to studies of the potential molecular mechanisms underlying sex differentiation and sex control in the Chinese soft-shelled turtle.
Collapse
|
21
|
Xiao L, Wang D, Guo Y, Tang Z, Liu Q, Li S, Zhang Y, Lin H. Comparative transcriptome analysis of diploid and triploid hybrid groupers (Epinephelus coioides♀ × E. lanceolatus♂) reveals the mechanism of abnormal gonadal development in triploid hybrids. Genomics 2018; 111:251-259. [PMID: 30453060 DOI: 10.1016/j.ygeno.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/10/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
Abstract
In our previous studies, diploid and triploid hybrids have been detected from the hybridization of Epinephelus coioides♀ × E. lanceolatus♂. The triploid groupers have been found to be delayed in gonadal development, but the mechanism remains poorly understood. In this study, we examined the gonadal development, assayed the serum steroid hormone levels, and compared the BP (brain and pituitary) and G (gonad) transcriptomes of 18-month-old diploid and triploid hybrids. The results showed that levels of serum estradiol-17β and testosterone were significantly higher in triploid groupers. The RNA-seq data revealed that 1518 and 14,963 differentially expressed genes were identified in the BP and G transcriptome, respectively. Further analysis revealed that the expression levels of genes involved in the sexual differentiation pathway and sex steroid synthesis pathway are significantly higher in triploid hybrids. Our findings provided a comprehensive insight into a better understanding of the regulatory mechanisms of sterility in triploid hybrid fish.
Collapse
Affiliation(s)
- Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhujing Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Qiongyu Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Marine Fisheries Development Center of Guangdong Province, Huizhou 516081, People's Republic of China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; College of Ocean, Hainan University, Haikou 570228, People's Republic of China
| |
Collapse
|
22
|
Biscotti MA, Adolfi MC, Barucca M, Forconi M, Pallavicini A, Gerdol M, Canapa A, Schartl M. A Comparative View on Sex Differentiation and Gametogenesis Genes in Lungfish and Coelacanths. Genome Biol Evol 2018; 10:1430-1444. [PMID: 29850809 PMCID: PMC6007259 DOI: 10.1093/gbe/evy101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/30/2022] Open
Abstract
Gonadal sex differentiation and reproduction are the keys to the perpetuation of favorable gene combinations and positively selected traits. In vertebrates, several gonad development features that differentiate tetrapods and fishes are likely to be, at least in part, related to the water-to-land transition. The collection of information from basal sarcopterygians, coelacanths, and lungfishes, is crucial to improve our understanding of the molecular evolution of pathways involved in reproductive functions, since these organisms are generally regarded as “living fossils” and as the direct ancestors of tetrapods. Here, we report for the first time the characterization of >50 genes related to sex differentiation and gametogenesis in Latimeria menadoensis and Protopterus annectens. Although the expression profiles of most genes is consistent with the intermediate position of basal sarcopterygians between actinopterygian fish and tetrapods, their phylogenetic placement and presence/absence patterns often reveal a closer affinity to the tetrapod orthologs. On the other hand, particular genes, for example, the male gonad factor gsdf (Gonadal Soma-Derived Factor), provide examples of ancestral traits shared with actinopterygians, which disappeared in the tetrapod lineage.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università di Trieste, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Wuerzburg, Germany.,Hagler Institute of Advanced Study and Department of Biology,Texa A&M University, USA
| |
Collapse
|
23
|
Liu ZH, Chen QL, Chen Q, Li F, Li YW. Diethylstilbestrol arrested spermatogenesis and somatic growth in the juveniles of yellow catfish (Pelteobagrus fulvidraco), a fish with sexual dimorphic growth. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:789-803. [PMID: 29340879 DOI: 10.1007/s10695-018-0469-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In fish, spermatogenesis and somatic growth are mainly regulated by hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-somatic (HPS) axes, respectively. Xenoestrogens have been reported to impair spermatogenesis in some fishes, and arrest somatic growth in some others, whereas, whether xenoestrogens are capable of disrupting spermatogenesis and somatic growth simultaneously in fish that exhibits sexual dimorphic growth is little known, and the underlying mechanisms remain poorly understood. In this study, male juveniles of yellow catfish (Pelteobagrus fulvidraco), which exhibits a sexual dimorphic growth that favors males, were exposed to diethylstilbestrol (DES) for 28 days. After exposure, DES significantly disrupted the spermatogenesis (decreased gonadal-somatic index (GSI) and germ cell number) and arrested the somatic growth (declined body weight) of the catfish juveniles. Gene expression and plasma steroid analyses demonstrated the suppressed mRNA levels of genes in HPG axis (gnrh-II, fshβ, and lhβ in the brain and dmrt1, sf1, fshr, cyp17a1, cyp19a1a, and cyp11b2 in the testis) and decreased 17β-estrodial (E2) and 11-ketotestosterone (11-KT) levels in plasma. Further analysis revealed the arrested germ cell proliferation (cyclin d1), meiosis (dmc1, sycp3), and enhanced apoptosis (decreased bcl-2 and elevated bax/bcl-2 ratio) in the testis. Besides, DES also suppressed the mRNA levels of genes in HPS axis (ghrh, gh, and prl in the brain and ghr, igf1, igf2a, and igf2b in the liver). The suppressed HPG and HPS axes were thus supposed to disturb spermatogenesis and arrest somatic growth in yellow catfish. The present study greatly extended our understanding on the mechanisms underlying the toxicity of DES on spermatogenesis and somatic growth of fish.
Collapse
Affiliation(s)
- Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qiang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Fang Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
24
|
Liu X, Li Z, Wang B, Zhu H, Liu Y, Qi J, Zhang Q. GATA4 is a transcriptional regulator of R-spondin1 in Japanese flounder (Paralichthys olivaceus). Gene 2018; 648:68-75. [PMID: 29331483 DOI: 10.1016/j.gene.2018.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
GATA4 is a well-known transcription factor of the GATA family implicated in regulation of sex determination and gonadal development in mammals. In this study, we cloned the full-length cDNA of Paralichthys olivaceus gata4 (Po-gata4). Phylogenetic, gene structure, and synteny analysis showed that Po-GATA4 is homologous to GATA4 of teleost and tetrapod. Po-gata4 transcripts were detected in Sertoli cells, spermatogonia, oogonia and oocytes, with higher transcript levels overall in the testis than the ovary. The promoter region of P. olivaceus R-spondin1was found to contain a GATA4-binding motif. Results of CBA (cleaved amplified polymorphic sequence-based binding assay) indicated that GATA4 could indeed bind to the promoter sequence of R-spondin1. Moreover, human GATA4 recombinant protein could upregulate R-spondin1 in P. olivaceus ovary cells and FBCs (flounder brain cell line). In FBCs, overexpression of Po-gata4 resulted in elevated transcript levels of R-spondin1. Taken together, our results indicate that Po-GATA4 is involved in gonadal development by regulating R-spondin1 expression.
Collapse
Affiliation(s)
- Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| |
Collapse
|
25
|
Zhu B, Ge W. Genome editing in fishes and their applications. Gen Comp Endocrinol 2018; 257:3-12. [PMID: 28919449 DOI: 10.1016/j.ygcen.2017.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
There have been revolutionary progresses in genome engineering in the past few years. The newly-emerged genome editing technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats associated with Cas9 (CRISPR/Cas9) have enabled biological scientists to perform efficient and precise targeted genome editing in different species. Fish represent the largest group of vertebrates with many species having values for both scientific research and aquaculture industry. Genome editing technologies have found extensive applications in different fish species for basic functional studies as well asapplied research in such fields as disease modeling and aquaculture. This mini-review focuses on recent advancements and applications of the new generation of genome editing technologies in fish species, with particular emphasis on their applications in understanding reproductive functions because the reproductive axis has been most systematically and best studied among others and its function has been difficult to address with reverse genetics approach.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
26
|
Liu J, Liu T, Niu J, Wu X, Zhai J, Zhang Q, Qi J. Expression pattern and functional analysis of R-spondin1 in tongue sole Cynoglossus semilaevis. Gene 2017; 642:453-460. [PMID: 29155330 DOI: 10.1016/j.gene.2017.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/16/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
R-spondin 1 (Rspo1) is a potential female-determining gene in mammals that could regulate the Wnt/β-catenin signaling pathway. The deletion of Rspo1 causes sex reversal in females. To investigate sexual determination and differentiation, we cloned and analyzed the Rspo1 gene in Cynoglossus semilaevis. Phylogenetic and gene structure analyses revealed that Rspo1 gene exhibited high sequence conservation and contained an N-terminal signal peptide, two furin-like cysteine-rich domains (FU1 and FU2), a thrombospondin type 1 repeat, and a C-terminal region enriched with basic charged amino acids. qRT-PCR revealed that Rspo1 expressed sexual dimorphism in gonad, with higher expression levels in the ovary than in the testis, thus, suggesting the involvement of Rspo1 in gonad differentiation. In situ hybridization results demonstrated that Rspo1 was expressed in premature germ cells, including spermatogonia and spermatocytes in the testis and stage II and stage III oocytes in the ovary. The methylation levels in two CpG sites of Rspo1 promoter significantly differed among females, males, and pseudomales. After 30days of exposure to high temperature, the expression of Rspo1 significantly decreased in female individuals, some of which were prone to males. However, no difference of Rspo1 gene expression was observed between the control group and high-temperature group in males. These preliminary findings suggested that Rspo1 played a crucial role in sex determination and development. This study laid the groundwork for further sex control breeding techniques in C. semilaevis.
Collapse
Affiliation(s)
- Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Tiantian Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jingjing Niu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xiaolong Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jieming Zhai
- LaizhouMingbo Aquatic CO., Ltd., Laizhou, 261418, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China.
| |
Collapse
|
27
|
Li H, Xu W, Zhu Y, Zhang N, Ma J, Sun A, Cui Z, Gao F, Wang N, Shao C, Dong Z, Li Y. Characterization and expression pattern of r-spondin1 in Cynoglossus semilaevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:772-780. [PMID: 29044994 DOI: 10.1002/jez.b.22774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
Abstract
r-spondin1 (rspo1) encodes a secreted protein that is involved in the determination and differentiation of the mammalian ovary. However, little information is yet available for teleosts. Here, we identified a homologue of rspo1 in Cynoglossus semilaevis. The full-length cDNA of rspo1 had a length of 2,703 bp with an open reading frame of 834 bp, encoding a protein with a length of 277 amino-acids. rspo1 expression was detected via qRT-PCR in various tissues, and significant sexually dimorphic expression was observed in the gonads. Furthermore, ISH located rspo1 in germ cells such as spermatogonia, spermatocytes, spermatids, spermatozoa, and oocytes, as well as in somatic cells of the gonads. Following knockdown of rspo1 in an ovarian cell line, the expressions of wnt4a, β-catenin, foxl2, and StAR were highly affected; wnt4a and β-catenin were significantly downregulated, whereas foxl2 and StAR were significantly upregulated. In summary, these data suggest that rspo1 may be involved in the regulation of ovarian development and differentiation through a conserved pathway, while the function of the gene in the testis remains elusive.
Collapse
Affiliation(s)
- Hailong Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Wenteng Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jialu Ma
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ai Sun
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No.BZ0301), Beijing Fisheries Research Institute, Beijing, China
| | - Zhongkai Cui
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fengtao Gao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Na Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhongdian Dong
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yangzhen Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
28
|
Yin P, Li YW, Chen QL, Liu ZH. Diethylstilbestrol, flutamide and their combination impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis and apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:129-137. [PMID: 28213303 DOI: 10.1016/j.aquatox.2017.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/30/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Both diethylstilbestrol (DES, an environmental estrogen) and flutamide (FLU, an anti-androgen) are found to impair spermatogenesis by disrupting hypothalamic-pituitary-gonadal (HPG) axis and altering androgen levels through different mechanisms/modes of action in fish with poorly understood underlying mechanisms. Furthermore, it is not known whether and how a combined exposure of DES and FLU has a stronger effect than the compounds alone. In this study, male zebrafish adults were exposed to DES, FLU and their combination (DES+FLU) for 30days, and their effects on histological structure and sperm count in testis, androgen level in plasma, as well as the mRNA levels of genes involved in HPG axis, meiotic regulation and apoptosis were analyzed. After exposure, DES and FLU disrupted spermatogenesis in zebrafish, and their combination resulted in even more severe impairment, indicating the inhibitory roles of these chemicals on spermatogenesis and their additive effects on zebrafish. The different regulation of vtg1 expression in the liver in response to DES and FLU further confirmed the different modes of action of these drugs. Gene expression and plasma steroid level analyses demonstrated the suppressed mRNA levels of the key genes (such as gnrh3, fshβ and lhβ in brain and dmrt1, sf1, cyp17a1 and cyp11b2 in testis) in HPG axis and decreased 11-ketotestosterone (11-KT) levels in plasma. The declined level of 11-KT was thus supposed to be closely related to the down-regulation of cyp26a1 (encoding the catabolic enzyme of retinoic acid) and suppression of genes involved in meiotic regulation (nanos1, dmc1 and sycp3). In fish exposed to DES and DES+FLU, enhanced apoptosis (elevated bax/bcl-2 expression ratio) was also observed. The suppression of meiotic regulation in response to all the exposures and enhanced apoptosis in response to DES were thus supposed to result in the spermatogenic impairment in zebrafish. The present study greatly extends our understanding on the mechanisms underlying of reproductive toxicity of environment estrogens and anti-androgens in fish.
Collapse
Affiliation(s)
- Pan Yin
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
29
|
Li M, Wang D. Gene editing nuclease and its application in tilapia. Sci Bull (Beijing) 2017; 62:165-173. [PMID: 36659401 DOI: 10.1016/j.scib.2017.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Abstract
Gene editing nucleases including zinc-finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system (CRISPR/Cas9) provide powerful tools that improve our ability to understand the physiological processes and their underlying mechanisms. To date, these approaches have already been widely used to generate knockout and knockin models in a large number of species. Fishes comprise nearly half of extant vertebrate species and provide excellent models for studying many aspects of biology. In this review, we present an overview of recent advances in the use of gene editing nucleases for studies of fish species. We focus particularly on the use of TALENs and CRISPR/Cas9 genome editing for studying sex determination in tilapia.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education, China), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education, China), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|