1
|
Boersma J, Enbody ED, Ketaloya S, Watts HE, Karubian J, Schwabl H. Does capacity to produce androgens underlie variation in female ornamentation and territoriality in White-shouldered Fairywren (Malurus alboscapulatus)? Horm Behav 2023; 154:105393. [PMID: 37331309 DOI: 10.1016/j.yhbeh.2023.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Historic bias toward study of sex hormones and sexual ornamentation in males currently constrains our perspective of hormone-behavior-phenotype relationships. Resolving how ornamented female phenotypes evolve is particularly important for understanding the diversity of social signals across taxa. Studies of both males and females in taxa with variable female phenotypes are needed to establish whether sexes share mechanisms underlying expression of signaling phenotypes and behavior. White-shouldered Fairywren (Malurus alboscapulatus) subspecies vary in female ornamentation, baseline circulating androgens, and response to territorial intrusion. The moretoni ornamented female subspecies is characterized by higher female, but lower male baseline androgens, and a stronger pair territorial response relative to pairs from the lorentzi unornamented female subspecies. Here we address whether subspecific differences in female ornamentation, baseline androgens, and pair territoriality are associated with ability to elevate androgens following gonadotropin releasing hormone (GnRH) challenge and in response to simulated territorial intrusion. We find that subspecies do not differ in their capacity to produce androgens in either sex following GnRH or simulated territorial intrusion (STI) challenges. STI-induced androgens were predictive of degree of response to territorial intrusions in females only, but the direction of the effect was mixed. GnRH-induced androgens did not correlate with response to simulated intruders, nor did females sampled during intrusion elevate androgens relative to flushed controls, suggesting that increased androgens are not necessary for the expression of territorial defense behaviors. Collectively, our results suggest that capacity to produce androgens does not underlie subspecific patterns of female ornamentation, territoriality, and baseline plasma androgens.
Collapse
Affiliation(s)
- Jordan Boersma
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Cornell Lab of Ornithology, Ithaca, NY, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Erik D Enbody
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Serena Ketaloya
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA; Porotona Village, Milne Bay Province, Papua New Guinea
| | - Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Lee EB, Dilower I, Marsh CA, Wolfe MW, Masumi S, Upadhyaya S, Rumi MAK. Sexual Dimorphism in Kisspeptin Signaling. Cells 2022; 11:1146. [PMID: 35406710 PMCID: PMC8997554 DOI: 10.3390/cells11071146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin (KP) and kisspeptin receptor (KPR) are essential for the onset of puberty, development of gonads, and maintenance of gonadal function in both males and females. Hypothalamic KPs and KPR display a high degree of sexual dimorphism in expression and function. KPs act on KPR in gonadotropin releasing hormone (GnRH) neurons and induce distinct patterns of GnRH secretion in males and females. GnRH acts on the anterior pituitary to secrete gonadotropins, which are required for steroidogenesis and gametogenesis in testes and ovaries. Gonadal steroid hormones in turn regulate the KP neurons. Gonadal hormones inhibit the KP neurons within the arcuate nucleus and generate pulsatile GnRH mediated gonadotropin (GPN) secretion in both sexes. However, the numbers of KP neurons in the anteroventral periventricular nucleus and preoptic area are greater in females, which release a large amount of KPs in response to a high estrogen level and induce the preovulatory GPN surge. In addition to the hypothalamus, KPs and KPR are also expressed in various extrahypothalamic tissues including the liver, pancreas, fat, and gonads. There is a remarkable difference in circulating KP levels between males and females. An increased level of KPs in females can be linked to increased numbers of KP neurons in female hypothalamus and more KP production in the ovaries and adipose tissues. Although the sexually dimorphic features are well characterized for hypothalamic KPs, very little is known about the extrahypothalamic KPs. This review article summarizes current knowledge regarding the sexual dimorphism in hypothalamic as well as extrahypothalamic KP and KPR system in primates and rodents.
Collapse
Affiliation(s)
- Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Courtney A. Marsh
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Sameer Upadhyaya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| |
Collapse
|
3
|
Grindstaff JL, Beaty LE, Ambardar M, Luttbeg B. Integrating theoretical and empirical approaches for a robust understanding of endocrine flexibility. J Exp Biol 2022; 225:274311. [PMID: 35258612 PMCID: PMC8987727 DOI: 10.1242/jeb.243408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing interest in studying hormones beyond single 'snapshot' measurements, as recognition that individual variation in the endocrine response to environmental change may underlie many rapid, coordinated phenotypic changes. Repeated measures of hormone levels in individuals provide additional insight into individual variation in endocrine flexibility - that is, how individuals modulate hormone levels in response to the environment. The ability to quickly and appropriately modify phenotype is predicted to be favored by selection, especially in unpredictable environments. The need for repeated samples from individuals can make empirical studies of endocrine flexibility logistically challenging, but methods based in mathematical modeling can provide insights that circumvent these challenges. Our Review introduces and defines endocrine flexibility, reviews existing studies, makes suggestions for future empirical work, and recommends mathematical modeling approaches to complement empirical work and significantly advance our understanding. Mathematical modeling is not yet widely employed in endocrinology, but can be used to identify innovative areas for future research and generate novel predictions for empirical testing.
Collapse
Affiliation(s)
| | - Lynne E Beaty
- School of Science, Penn State Erie - The Behrend College, Erie, PA 16563, USA
| | - Medhavi Ambardar
- Department of Biological Sciences, Fort Hays State University, Hays, KS 67601, USA
| | - Barney Luttbeg
- Department of Integrative Biology, Oklahoma State University, OK 74078, USA
| |
Collapse
|
4
|
DeRango EJ, Schwarz JFL, Piedrahita P, Páez‐Rosas D, Crocker DE, Krüger O. Hormone-mediated foraging strategies in an uncertain environment: Insights into the at-sea behavior of a marine predator. Ecol Evol 2021; 11:7579-7590. [PMID: 34188836 PMCID: PMC8216952 DOI: 10.1002/ece3.7590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Hormones are extensively known to be physiological mediators of energy mobilization and allow animals to adjust behavioral performance in response to their environment, especially within a foraging context.Few studies, however, have narrowed focus toward the consistency of hormonal patterns and their impact on individual foraging behavior. Describing these relationships can further our understanding of how individuals cope with heterogeneous environments and exploit different ecological niches.To address this, we measured between- and within-individual variation of basal cortisol (CORT), thyroid hormone T3, and testosterone (TEST) levels in wild adult female Galápagos sea lions (Zalophus wollebaeki) and analyzed how these hormones may be associated with foraging strategies. In this marine predator, females exhibit one of three spatially and temporally distinct foraging patterns (i.e., "benthic," "pelagic," and "night" divers) within diverse habitat types.Night divers differentiated from other strategies by having lower T3 levels. Considering metabolic costs, night divers may represent an energetically conservative strategy with shorter dive durations, depths, and descent rates to exploit prey which migrate up the water column based on vertical diel patterns.Intriguingly, CORT and TEST levels were highest in benthic divers, a strategy characterized by congregating around limited, shallow seafloors to specialize on confined yet reliable prey. This pattern may reflect hormone-mediated behavioral responses to specific risks in these habitats, such as high competition with conspecifics, prey predictability, or greater risks of predation.Overall, our study highlights the collective effects of hormonal and ecological variation on marine foraging. In doing so, we provide insights into how mechanistic constraints and environmental pressures may facilitate individual specialization in adaptive behavior in wild populations.
Collapse
Affiliation(s)
| | | | - Paolo Piedrahita
- Facultad de Ciencias de la VidaEscuela Superior Politécnica del LitoralGuayaquilEcuador
| | - Diego Páez‐Rosas
- Universidad San Francisco de QuitoGalápagos Science CenterIsla San CristobalEcuador
- Dirección Parque Nacional GalápagosOficina Técnica San CristóbalIsla San CristóbalEcuador
| | | | - Oliver Krüger
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| |
Collapse
|
5
|
George EM, Navarro D, Rosvall KA. A single GnRH challenge promotes paternal care, changing nestling growth for one day. Horm Behav 2021; 130:104964. [PMID: 33713853 PMCID: PMC8025405 DOI: 10.1016/j.yhbeh.2021.104964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Decades of comparative and experimental work suggest that testosterone (T) promotes mating effort at the expense of parental effort in many vertebrates. There is abundant evidence that T-mediated trade-offs span both evolutionary and seasonal timescales, as T is often higher in species or breeding stages with greater mating competition and lower in association with parental effort. However, it is less clear whether transient elevations in T within a male's own reactive scope can affect parental effort in the same way, with effects that are visible to natural selection. Here, we injected free-living male tree swallows (Tachycineta bicolor) with gonadotropin-releasing hormone (GnRH), thus temporarily maximizing T production within an individual's own limit. Passive loggers at each nest showed that GnRH-injected males provisioned more frequently than saline males for the subsequent day, and their offspring gained more mass during that time. The degree of offspring growth was positively correlated with the father's degree of T elevation, but provisioning was not proportional to changes in T, and GnRH- and saline-injected males did not differ in corticosterone secretion. These results suggest that prior knowledge of T-mediated trade-offs garnered from seasonal, evolutionary, and experimental research cannot necessarily be generalized to the timescale of transient fluctuations in T secretion within an individual. Instead, we propose that GnRH-induced T fluctuations may not result in visible trade-offs if selection has already sculpted an individual male's reactive scope based on his ability to handle the competing demands of mating and parental care.
Collapse
Affiliation(s)
- Elizabeth M George
- Indiana University, Department of Biology, United States of America; Indiana University, Center for the Integrated Study of Animal Behavior, United States of America.
| | - David Navarro
- Indiana University, Center for the Integrated Study of Animal Behavior, United States of America
| | - Kimberly A Rosvall
- Indiana University, Department of Biology, United States of America; Indiana University, Center for the Integrated Study of Animal Behavior, United States of America
| |
Collapse
|
6
|
Bell AM. Individual variation and the challenge hypothesis. Horm Behav 2020; 123:104549. [PMID: 31247185 PMCID: PMC6980443 DOI: 10.1016/j.yhbeh.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
In this paper I discuss how the challenge hypothesis (Wingfield et al., 1990) influenced the development of ideas about animal personality, and describe particularly promising areas for future study at the intersection of these two topics. I argue that the challenge hypothesis influenced the study of animal personality in at least three specific ways. First, the challenge hypothesis drew attention to the ways in which the environment experienced by an organism - including the social environment - can influence biological processes internal to the organism, e.g. changes to physiology, gene expression, neuroendocrine state and epigenetic modifications. That is, the challenge hypothesis illustrated the bidirectional, dynamic relationship between hormones and (social) environments, thereby helping us to understand how behavioral variation among individuals can emerge over time. Because the paper was inspired by data collected on free living animals in natural populations, it drew behavioral ecologists' attention to this phenomenon. Second, the challenge hypothesis highlighted what became a paradigmatic example of a hormonal mechanism for a behavioral spillover, i.e. testosterone's pleiotropic effects on both territorial aggression and parental care causes aggression to "spillover" to influence parenting behavior, thereby limiting behavioral plasticity. Third, the challenge hypothesis contributed to what is now a cottage industry examining individual differences in hormone titres and their relationship with behavioral variation. I argue that one particularly promising future research direction in this area is to consider the active role of behavior and behavioral types in eliciting social interactions, including territorial challenges.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, Program in Ecology, Evolution and Conservation, Neuroscience Program, University of Illinois, Urbana Champaign, United States of America.
| |
Collapse
|
7
|
Hsu BY, Verhagen I, Gienapp P, Darras VM, Visser ME, Ruuskanen S. Between- and Within-Individual Variation of Maternal Thyroid Hormone Deposition in Wild Great Tits ( Parus major). Am Nat 2019; 194:E96-E108. [PMID: 31490720 DOI: 10.1086/704738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Maternal hormones are often considered a mediator of anticipatory maternal effects; namely, mothers adjust maternal hormone transfer to prepare the offspring for the anticipated environment. The flexibility for mothers to adjust hormone transfer is therefore a prerequisite for such anticipatory maternal effects. Nevertheless, previous studies have focused only on the average differences of maternal hormone transfer between groups and neglected the substantial individual variation, despite the fact that individual plasticity in maternal hormone transfer is actually the central assumption. In this study, we studied the between- and within-individual variation of maternal thyroid hormones (THs) in egg yolk of wild great tits (Parus major) and estimated the individual plasticity of maternal yolk THs across environmental temperature, clutch initiation dates, and egg laying order using linear mixed effects models. Interestingly, our models provide statistical evidence that the two main THs-the main biologically active hormone T3 and T4, which is mostly considered a prohormone-exhibited different variation patterns. Yolk T3 showed significant between-individual variation on the average levels, in line with its previously reported moderate heritability. Yolk T4, however, showed significant between-clutch variation in the pattern over the laying sequence, suggesting a great within-individual plasticity. Our findings suggest that the role and function of the hormone within the endocrine axis likely influences its flexibility to respond to environmental change. Whether the flexibility of T4 deposition brings a fitness advantage should be examined along with its potential effects on offspring, which remain to be further investigated.
Collapse
|
8
|
Abolins-Abols M, Hauber ME. Host defences against avian brood parasitism: an endocrine perspective. Proc Biol Sci 2018; 285:rspb.2018.0980. [PMID: 30185646 DOI: 10.1098/rspb.2018.0980] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/13/2018] [Indexed: 11/12/2022] Open
Abstract
Host defences against avian brood parasites are the outcome of well-documented coevolutionary arms races, yet important questions about variation in hosts' antiparasitic response traits remain poorly understood. Why are certain defences employed by some species or individuals and not by others? Here, we propose that understanding variability in and the evolution of host defences can be facilitated by the study of the underlying physiological mechanisms. Specifically, because antiparasitic strategies involve behaviours that have been shown to be hormonally regulated in other contexts, we hypothesize that host responses to brood parasites are likely to be mediated by related endocrine mechanisms. We outline the hallmarks of the endocrine bases of parasite defence-related avian behaviours, review the current understanding of antiparasitic host tactics and propose testable hypotheses about the hormonal mechanisms that may mediate host defences. We consider these mechanisms in a life-history framework and discuss how endocrine factors may shape variation in host defences. By providing a hypothesis-driven mechanistic framework for defences against parasitism, this perspective should stimulate the study of their endocrine bases to enhance our understanding of the intricate arms races in avian host-parasite systems.
Collapse
Affiliation(s)
- Mikus Abolins-Abols
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Mark E Hauber
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
9
|
George EM, Rosvall KA. Testosterone production and social environment vary with breeding stage in a competitive female songbird. Horm Behav 2018; 103:28-35. [PMID: 29807035 DOI: 10.1016/j.yhbeh.2018.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/02/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022]
Abstract
In many vertebrates, males increase circulating testosterone (T) levels in response to seasonal and social changes in competition. Females are also capable of producing and responding to T, but the full extent to which they can elevate T across life history stages remains unclear. Here we investigated T production during various breeding stages in female tree swallows (Tachycineta bicolor), which face intense competition for nesting sites. We performed GnRH and saline injections and compared changes in T levels 30 min before and after injection. We found that GnRH-injected females showed the greatest increases in T during territory establishment and pre-laying stages, whereas saline controls dramatically decreased T production during this time. We also observed elevated rates of conspecific aggression during these early stages of breeding. During incubation and provisioning, however, T levels and T production capabilities declined. Given that high T can disrupt maternal care, an inability to elevate T levels in later breeding stages may be adaptive. Our results highlight the importance of saline controls for contextualizing T production capabilities, and they also suggest that social modulation of T is a potential mechanism by which females may respond to competition, but only during the period of time when competition is most intense. These findings have broad implications for understanding how females can respond to their social environment and how selection may have shaped these hormone-behavior interactions.
Collapse
Affiliation(s)
- Elizabeth M George
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA.
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Goymann W, Flores Dávila P. Acute peaks of testosterone suppress paternal care: evidence from individual hormonal reaction norms. Proc Biol Sci 2018. [PMID: 28637857 DOI: 10.1098/rspb.2017.0632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A long-standing tenet of evolutionary endocrinology states that testosterone mediates the life-history trade-off between mating and paternal care. However, the support for a role of testosterone in suppressing paternal care is mixed: implantation studies in birds suggest that high-level testosterone implants suppress paternal care, but circulating levels of testosterone and paternal care are typically not correlated. Because any trade-off in real life must be realized with hormone levels that are within an individual's reaction norm, it is crucial to show that natural changes in the hormone can modulate behaviour. Here, we used GnRH-injections to alter testosterone levels of free-living male black redstarts within each individual's hormonal reaction norm: individuals experiencing a short-term peak in testosterone resumed feeding their offspring later and showed a stronger suppression of offspring-feeding behaviour than control males. For the first time, this study demonstrated that short-term peaks in testosterone within the hormonal reaction norm of individuals can suppress paternal behaviour. Our findings reconcile previous seemingly contradictive effects that testosterone implants had on paternal care and the absence of correlations between circulating testosterone levels and paternal care, and demonstrate that the differential production of testosterone within the hormonal reaction norm of single individuals can indeed function as a mechanism to mediate a potential trade-off between mating and parenting. On a broader note, our results suggest that natural and short peaks in testosterone can elicit adaptive behavioural changes.
Collapse
Affiliation(s)
- Wolfgang Goymann
- Max-Planck-Institut für Ornithologie, Abteilung für Verhaltensneurobiologie, Eberhard-Gwinner-Strasse 6a, 82319 Seewiesen, Germany
| | - Pamela Flores Dávila
- Max-Planck-Institut für Ornithologie, Abteilung für Verhaltensneurobiologie, Eberhard-Gwinner-Strasse 6a, 82319 Seewiesen, Germany
| |
Collapse
|