1
|
Xu Q, Ye M, Su Y, Feng L, Zhou L, Xu J, Wang D. Hypogonadotropic hypogonadism in male tilapia lacking a functional rln3b gene. Int J Biol Macromol 2024; 270:132165. [PMID: 38729472 DOI: 10.1016/j.ijbiomac.2024.132165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Relaxin 3 is a neuropeptide that plays a crucial role in reproductive functions of mammals. Previous studies have confirmed that rln3a plays an important role in the male reproduction of tilapia. To further understand the significance of its paralogous gene rln3b in male fertility, we generated a homozygous mutant line of rln3b in Nile tilapia. Our findings indicated that rln3b mutation delayed spermatogenesis and led to abnormal testes structure. Knocking out rln3b gene resulted in a decrease in sperm count, sperm motility and male fish fertility. TUNEL detection revealed a small amount of apoptosis in the testes of rln3b-/- male fish at 390 days after hatching (dah). RT-qPCR analysis demonstrated that mutation of rln3b gene caused a significant downregulation of steroid synthesis-related genes such as cyp17a1, cyp11b2, germ cell marker gene, Vasa, and gonadal somatic cell marker genes of amh and amhr2. Furthermore, we found a significant down-regulation of hypothalamic-pituitary-gonadal (HPG) axis-related genes, while a significantly up-regulation of the dopamine synthetase gene in the rln3b-/- male fish. Taken together, our data strongly suggested that Rln3b played a crucial role in the fertility of XY tilapia by regulating HPG axis genes.
Collapse
Affiliation(s)
- Qinglei Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yun Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Jian Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Chen J, Li Y, Zhang W, Wu Y, Zhao L, Huang X, Fang Y, Wang B. Molecular characterization and ontogenetic expression profiles of LPXRFa and its receptor in Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2024; 345:114392. [PMID: 37858870 DOI: 10.1016/j.ygcen.2023.114392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Investigations concerning the LPXRFa system are rarely conducted in flatfish species. Here, we first identified and characterized lpxrfa and its cognate receptor lpxrfa-r genes in the Japanese flounder (Paralichthys olivaceus). The coding DNA sequence of lpxrfa was 579 bp in length, wich encoded a 192-aa preprohormone that can produce three mature LPXRFa peptides. The open reading frame (ORF) of lpxrfa-r was 1446 bp in size, and encoded a 481-aa LPXRFa-R protein that encompassed seven hydrophobic transmembrane domains. Subsequently, tissue distribution expression profiles of lpxrfa and lpxrfa-r transcripts were assayed by quantitative real-time PCR. The results indicated that expressions of lpxrfa transcripts were detected at the highest levels in the brain of both females and males, however, lpxrfa-r transcripts were remarkablely expressed in the brain tissue of female fish and in the testis tissue of male fish. Furthermore, transcript levels of lpxrfa and lpxrfa-r genes were investigated during early ontogenetic development, with the maximum expression levels at 30 days post-hatching. Overall, these data contribute to providing preliminary proof for the existence and structure of the LPXRFa system in Japanese flounder, and the study is just the foundation for researching physiological function of LPXRFa system in this species.
Collapse
Affiliation(s)
- Jun Chen
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Yuru Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenwen Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanqing Wu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Limiao Zhao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xueying Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
3
|
Comparative insights of the neuroanatomical distribution of the gonadotropin-inhibitory hormone (GnIH) in fish and amphibians. Front Neuroendocrinol 2022; 65:100991. [PMID: 35227766 DOI: 10.1016/j.yfrne.2022.100991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
Abstract
This paper intends to apprise the reader regarding the existing knowledge on the neuroanatomical distribution of GnIH-like peptides in in fish and amphibians in both the adult stage and during ontogenesis. The neuroanatomical distribution of GnIH-like neuropeptides appears quite different in the studied species, irrespective of the evolutionary closeness. The topology of the olfactory bulbs can affect the distribution of neurons producing the GnIH-like peptides, with a tendency to show a more extended distribution into the brains with pedunculate olfactory bulbs. Therefore, the variability of the GnIH-like system could also reflect specific adaptations rather than evolutionary patterns. The onset of GnIH expression was detected very early during development suggesting its precocious roles, and the neuroanatomical distribution of GnIH-like elements showed a generally increasing trend. This review highlights some critical technical aspects and the need to increase the number of species to be studied to obtain a complete neuroanatomical picture of the GnIH-like system.
Collapse
|
4
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
5
|
Rahman ML, Zahangir MM, Kitahashi T, Shahjahan M, Ando H. Effects of high and low temperature on expression of GnIH, GnIH receptor, GH and PRL genes in the male grass puffer during breeding season. Gen Comp Endocrinol 2019; 282:113200. [PMID: 31199926 DOI: 10.1016/j.ygcen.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 01/19/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a multifunctional hypophysiotropic neurohormone and has a stimulatory role in the control of reproduction in the grass puffer. To clarify the neuroendocrine mechanisms underlying the effect of changes in water temperature on reproduction in fish, we previously revealed that, in parallel to gonadal regression, both low and high temperature significantly decreased the expressions of the genes encoding kisspeptin (kiss2), kisspeptin receptor (kiss2r), gonadotropin-releasing hormone 1 (gnrh1) in the brain and gonadotropin (GTH) subunits (fshb and lhb) in the pituitary of sexually mature male grass puffer. In this study, we examined the changes in expression of gnih and GnIH receptor gene (gnihr) in the brain and pituitary along with the genes for growth hormone (gh) and prolactin (prl) in the pituitary of male grass puffer exposed to low temperature (14 °C), normal temperature (21 °C, as initial control) and high temperature (28 °C) conditions for 7 days. The levels of gnih and gnihr mRNAs were significantly decreased in both low and high temperature conditions compared to normal temperature in the brain and pituitary. Similarly, the gh mRNA levels were significantly decreased in both low and high temperature conditions. The prl mRNAs showed no significant changes at high temperature, whereas drastically decreased at low temperature possibly by dysfunctional cold stress. Taken together, the present results suggest that, in addition to the inhibitory effect of temperature changes on the Kiss2/GnRH1/GTH system, the suppression of GnIH/GH system may also be involved in the termination of reproduction by high temperature at the end of breeding season.
Collapse
Affiliation(s)
- Mohammad Lutfar Rahman
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan; Department of Fish Biology and Biotechnology, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Takashi Kitahashi
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
| | - Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
6
|
Di Yorio MP, Muñoz-Cueto JA, Paullada-Salmerón JA, Somoza GM, Tsutsui K, Vissio PG. The Gonadotropin-Inhibitory Hormone: What We Know and What We Still Have to Learn From Fish. Front Endocrinol (Lausanne) 2019; 10:78. [PMID: 30837949 PMCID: PMC6389629 DOI: 10.3389/fendo.2019.00078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and mammals; however, in other vertebrates this function is not yet clearly established. More than half of the vertebrate species are teleosts. This group is characterized by the 3R whole genome duplication, a fact that could have been responsible for the great phenotypic complexity and great variability in reproductive strategies and sexual behavior. In this context, we revise GnIH cell bodies and fibers distribution in adult brains of teleosts, discuss its relationship with GnRH variants and summarize the few reports available about the ontogeny of the GnIH system. Considering all the information presented in this review, we propose that in teleosts, GnIH could have other functions beyond reproduction or act as an integrative signal in the reproductive process. However, further studies are required in order to clarify the role of GnIH in this group including its involvement in development, a key stage that strongly impacts on adult life.
Collapse
Affiliation(s)
- María P. Di Yorio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Paula G. Vissio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Paula G. Vissio
| |
Collapse
|