1
|
Parker CG, Gruenhagen GW, Hegarty BE, Histed AR, Streelman JT, Rhodes JS, Johnson ZV. Adult sex change leads to extensive forebrain reorganization in clownfish. Biol Sex Differ 2024; 15:58. [PMID: 39044232 PMCID: PMC11267845 DOI: 10.1186/s13293-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. METHODS This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. RESULTS We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of sexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. CONCLUSIONS This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA
- Department of Biology, University of Maryland, College Park, MD, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Abigail R Histed
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA.
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
2
|
Stennette KA, Godwin JR. Estrogenic influences on agonistic behavior in teleost fishes. Horm Behav 2024; 161:105519. [PMID: 38452611 DOI: 10.1016/j.yhbeh.2024.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Teleost fishes show an extraordinary diversity of sexual patterns, social structures, and sociosexual behaviors. Sex steroid hormones are key modulators of social behaviors in teleosts as in other vertebrates and act on sex steroid receptor-containing brain nuclei that form the evolutionarily conserved vertebrate social behavior network (SBN). Fishes also display important differences relative to tetrapod vertebrates that make them particularly well-suited to study the physiological mechanisms modulating social behavior. Specifically, fishes exhibit high levels of brain aromatization and have what has been proposed to be a lifelong, steroid hormone dependent plasticity in the neural substrates mediating sociosexual behavior. In this review, we examine how estrogenic signaling modulates sociosexual behaviors in teleosts with a particular focus on agonistic behavior. Estrogens have been shown to mediate agonistic behaviors in a broad range of fishes, from sexually monomorphic gonochoristic species to highly dimorphic sex changers with alternate reproductive phenotypes. These similarities across such diverse taxa contribute to a growing body of evidence that estrogens play a crucial role in the modulation of aggression in vertebrates. As analytical techniques and genomic tools rapidly advance, methods such as LC-MS/MS, snRNAseq, and CRISPR-based mutagenesis show great promise to further elucidate the mechanistic basis of estrogenic effects on social behavior in the diverse teleost lineage.
Collapse
Affiliation(s)
- Katherine A Stennette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Parker CG, Gruenhagen GW, Hegarty BE, Histed AR, Streelman JT, Rhodes JS, Johnson ZV. Adult sex change leads to extensive forebrain reorganization in clownfish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577753. [PMID: 38352560 PMCID: PMC10862741 DOI: 10.1101/2024.01.29.577753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of neurosexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
Collapse
Affiliation(s)
- Coltan G. Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
| | - George W. Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brianna E. Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Abigail R. Histed
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Jeffrey T. Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Justin S. Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Zachary V. Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Kawabata-Sakata Y, Kanda S, Okubo K. Male-specific vasotocin expression in the medaka tuberal hypothalamus: Androgen dependence and probable role in aggression. Mol Cell Endocrinol 2024; 580:112101. [PMID: 37923055 DOI: 10.1016/j.mce.2023.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Terrestrial vertebrates have a population of androgen-dependent vasotocin (VT)-expressing neurons in the extended amygdala that are more abundant in males and mediate male-typical social behaviors, including aggression. Teleosts lack these neurons but instead have novel male-specific VT-expressing neurons in the tuberal hypothalamus. Here we found in medaka that vt expression in these neurons is dependent on post-pubertal gonadal androgens and that androgens can act on these neurons to directly stimulate vt transcription via the androgen receptor subtype Ara. Furthermore, administration of exogenous VT induced aggression in females and alterations in the androgen milieu led to correlated changes in the levels of tuberal hypothalamic vt expression and aggression in both sexes. However, genetic ablation of vt failed to prevent androgen-induced aggression in females. Collectively, our results demonstrate a marked androgen dependence of male-specific vt expression in the teleost tuberal hypothalamus, although its relevance to male-typical aggression needs to be further validated.
Collapse
Affiliation(s)
- Yukika Kawabata-Sakata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan; Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo, 160-8402, Japan
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Xiang J, Guo RY, Wang T, Zhang N, Chen XR, Li EC, Zhang JL. Brain metabolite profiles provide insight into mechanisms for behavior sexual dimorphisms in zebrafish (Danio rerio). Physiol Behav 2023; 263:114132. [PMID: 36801416 DOI: 10.1016/j.physbeh.2023.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The zebrafish (Danio rerio) has historically been a useful model for research in genetics, ecology, biology, toxicology, and neurobehavior. Zebrafish have been demonstrated to have brain sexual dimorphism. However, the sexual dimorphism of zebrafish behavior demands our attention, particularly. To evaluate the behavior and brain sexual dimorphisms in zebrafish, this study assessed sex differences in adult D. rerio in four behavioral domains, including aggression, fear, anxiety, and shoaling, and further compared with metabolites in the brain tissue of females and males. Our findings showed that aggression, fear, anxiety and shoaling behaviors were significantly sexually dimorphic. Interestingly, we also show through a novel data analysis method, that the female zebrafish exhibited significantly increased shoaling behavior when shoaled with male zebrafish groups and, for the first time, we offer evidence that male shoals are beneficial in dramatically alleviating anxiety in zebrafish. In addition, there were significant changes in metabolites in zebrafish brain tissue between the sexes. Furthermore, zebrafish behavioral sexual dimorphism may be associated with brain sexual dimorphism, with significant differences in brain metabolites. Therefore, to prevent the influence or even bias of behavioral sex differences on results, it is suggested that behavioral studies or behavioral-based other relevant investigations consider sexual dimorphism of behavior and brain.
Collapse
Affiliation(s)
- Jing Xiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui-Ying Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ting Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Nan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xian-Rui Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Er-Chao Li
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
6
|
Parker CG, Craig SE, Histed AR, Lee JS, Ibanez E, Pronitcheva V, Rhodes JS. New cells added to the preoptic area during sex change in the common clownfish Amphiprion ocellaris. Gen Comp Endocrinol 2023; 333:114185. [PMID: 36509136 DOI: 10.1016/j.ygcen.2022.114185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Sex differences in cell number in the preoptic area of the hypothalamus (POA) are documented across all major vertebrate lineages and contribute to differential regulation of the hypothalamic-pituitary-gonad axis and reproductive behavior between the sexes. Sex-changing fishes provide a unique opportunity to study mechanisms underlying sexual differentiation of the POA. In anemonefish (clownfish), which change sex from male to female, females have approximately twice the number of medium-sized cells in the anterior POA compared to males. This sex difference transitions from male-like to female-like during sex change. However, it is not known how this sex difference in POA cell number is established. This study tests the hypothesis that new cell addition plays a role. We initiated adult male-to-female sex change in 30 anemonefish (Amphiprion ocellaris) and administered BrdU to label new cells added to the POA at regular intervals throughout sex change. Sex-changing fish added more new cells to the anterior POA than non-changing fish, supporting the hypothesis. The observed effects could be accounted for by differences in POA volume, but they are also consistent with a steady trickle of new cells being gradually accumulated in the anterior POA before vitellogenic oocytes develop in the gonads. These results provide insight into the unique characteristics of protandrous sex change in anemonefish relative to other modes of sex change, and support the potential for future research in sex-changing fishes to provide a richer understanding of the mechanisms for sexual differentiation of the brain.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Sarah E Craig
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Abigail R Histed
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Joanne S Lee
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Emma Ibanez
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Veronica Pronitcheva
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA; Department of Psychology, University of Illinois, Urbana-Champaign, 603 E Daniel St, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Zhang S, Fu Z, Xu Y, Zhao X, Sun M, Feng X. The masculinization steroid milieu caused by fluorene-9-bisphenol disrupts sex-typical courtship behavior in female zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114174. [PMID: 36228360 DOI: 10.1016/j.ecoenv.2022.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In vertebrates, the behavior of congenital sex differences between males and females is highly dependent on steroid signals and hormonal milieu. The presence of endocrine disrupting chemicals (EDCs) in the environment generally plays a similar role to sex hormones, so its interference with aquatic organism population stability can not be ignored and is worth studying. Fluorene-9-bisphenol (BHPF) has been clarified as an endocrine disruptor on organisms by several studies but its mechanism in perturbation of courtship behavior of female zebrafish is not clear. Here, we proposed an automated multi-zebrafish tracking method quantifying the courtship process and reported that zebrafish females exposed to BHPF, are not receptive to males but rather court females, and lose normal ovarian function with an altered sex steroid milieu. Our results showed that BHPF damaged 17β-estradiol synthesis by down-regulation of sox3 and cyp19a1a, linking apoptosis with ovary development and female fecundity. The down-regulated expression of estrogen signaling through an estrogen receptor, esr2b, caused the induction of masculinization of female courtship behavior and sexual preference in zebrafish females after BHPF treatment. This process might be mediated by inhibiting the transcription of a neuropeptide B (npb) in the brain. Our study reveals that the estrogen signaling pathway may play an important role in classical courtship behavior and sexual preference of zebrafish. This study provided evidence that anti-estrogenic chemical exposure caused adverse effects on the regulation of the brain-gonad-estrogen axis of aquatic organisms, which should be of concern and highlighted the importance of controlling environmental contamination.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Yixin Xu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Mishra S, Chaube R. Impact of ovariectomy and estradiol-17β (E2) replacement on the brain steroid levels of the Indian stinging catfish Heteropneustes fossilis. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Oda A, Inoue S, Kaneko R, Narita Y, Shiono S, Kaneko T, Tseng YC, Ohtani-Kaneko R. Involvement of IGF-1R-PI3K-AKT-mTOR pathway in increased number of GnRH3 neurons during androgen-induced sex reversal of the brain in female tilapia. Sci Rep 2022; 12:2450. [PMID: 35165334 PMCID: PMC8844422 DOI: 10.1038/s41598-022-06384-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
The neuroplastic mechanism of sex reversal in the fish brain remains unclear due to the difficulty in identifying the key neurons involved. Mozambique tilapia show different reproductive behaviours between sexes; males build circular breeding nests while females hold and brood fertilized eggs in their mouth. In tilapia, gonadotropin-releasing hormone 3 (GnRH3) neurons, located in the terminal nerve, regulate male reproductive behaviour. Mature males have more GnRH3 neurons than mature females, and these neurons have been indicated to play a key role in the androgen-induced female-to-male sex reversal of the brain. We aimed to elucidate the signalling pathway involved in the androgen-induced increase in GnRH3 neurons in mature female tilapia. Applying inhibitors to organotypic cultures of brain slices, we showed that the insulin-like growth factor (IGF)-1 receptor (IGF-1R)/PI3K/AKT/mTOR pathway contributed to the androgen-induced increase in GnRH3 neurons. The involvement of IGF-1 and IGF-1R in 11-ketotestosterone (11-KT)-induced development of GnRH3 neurons was supported by an increase in Igf-1 mRNA shortly after 11-KT treatment, the increase of GnRH3 neurons after IGF-1 treatment and the expression of IGF-1R in GnRH3 neurons. Our findings highlight the involvement of IGF-1 and its downstream signalling pathway in the sex reversal of the tilapia brain.
Collapse
|
10
|
Prim JH, Phillips MC, Lamm MS, Brady J, Cabral I, Durden S, Dustin E, Hazellief A, Klapheke B, Lamb AD, Lukowsky A, May D, Sanchez SG, Thompson KC, Tyler WA, Godwin J. Estrogenic signaling and sociosexual behavior in wild sex-changing bluehead wrasses, Thalassoma bifasciatum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:24-34. [PMID: 34752686 DOI: 10.1002/jez.2558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Estrogenic signaling is an important focus in studies of gonadal and brain sexual differentiation in fishes and vertebrates generally. This study examined variation in estrogenic signaling (1) across three sexual phenotypes (female, female-mimic initial phase [IP] male, and terminal phase [TP] male), (2) during socially-controlled female-to-male sex change, and (3) during tidally-driven spawning cycles in the protogynous bluehead wrasse (Thalassoma bifasciatum). We analyzed relative abundances of messenger RNAs (mRNAs) for the brain form of aromatase (cyp19a1b) and the three nuclear estrogen receptors (ER) (ERα, ERβa, and ERβb) by qPCR. Consistent with previous reports, forebrain/midbrain cyp19a1b was highest in females, significantly lower in TP males, and lowest in IP males. By contrast, ERα and ERβb mRNA abundances were highest in TP males and increased during sex change. ERβa mRNA did not vary significantly. Across the tidally-driven spawning cycle, cyp19a1b abundances were higher in females than TP males. Interestingly, cyp19a1b levels were higher in TP males close (~1 h) to the daily spawning period when sexual and aggressive behaviors rise than males far from spawning (~10-12 h). Together with earlier findings, our results suggest alterations in neural estrogen signaling are key regulators of socially-controlled sex change and sexual phenotype differences. Additionally, these patterns suggest TP male-typical sociosexual behaviors may depend on intermediate rather than low estrogenic signaling. We discuss these results and the possibility that an inverted-U shaped relationship between neural estrogen and male-typical behaviors is more common than presently appreciated.
Collapse
Affiliation(s)
- Julianna H Prim
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Marshall C Phillips
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Melissa S Lamm
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeannie Brady
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Itze Cabral
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Shelby Durden
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Elizabeth Dustin
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Allison Hazellief
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Brandon Klapheke
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - April D Lamb
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Alison Lukowsky
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Dianna May
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - Sidney G Sanchez
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kelly C Thompson
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - William A Tyler
- Department of Biology, Indian River State College, Fort Pierce, Florida, USA
| | - John Godwin
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Vissio PG, Di Yorio MP, Pérez-Sirkin DI, Somoza GM, Tsutsui K, Sallemi JE. Developmental aspects of the hypothalamic-pituitary network related to reproduction in teleost fish. Front Neuroendocrinol 2021; 63:100948. [PMID: 34678303 DOI: 10.1016/j.yfrne.2021.100948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is the main system that regulates reproduction in vertebrates through a complex network that involves different neuropeptides, neurotransmitters, and pituitary hormones. Considering that this axis is established early on life, the main goal of the present work is to gather information on its development and the actions of its components during early life stages. This review focuses on fish because their neuroanatomical characteristics make them excellent models to study neuroendocrine systems. The following points are discussed: i) developmental functions of the neuroendocrine components of this network, and ii) developmental disruptions that may impact adult reproduction. The importance of the components of this network and their susceptibility to external/internal signals that can alter their specific early functions and/or even the establishment of the reproductive axis, indicate that more studies are necessary to understand this complex and dynamic network.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez-Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Julieta E Sallemi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
13
|
Nishiike Y, Miyazoe D, Togawa R, Yokoyama K, Nakasone K, Miyata M, Kikuchi Y, Kamei Y, Todo T, Ishikawa-Fujiwara T, Ohno K, Usami T, Nagahama Y, Okubo K. Estrogen receptor 2b is the major determinant of sex-typical mating behavior and sexual preference in medaka. Curr Biol 2021; 31:1699-1710.e6. [PMID: 33639108 DOI: 10.1016/j.cub.2021.01.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023]
Abstract
Male and female animals typically display innate sex-specific mating behaviors, which, in vertebrates, are highly dependent on sex steroid signaling. While estradiol-17β (E2) signaling through estrogen receptor 2 (ESR2) serves to defeminize male mating behavior in rodents, the available evidence suggests that E2 signaling is not required in teleosts for either male or female mating behavior. Here, we report that female medaka deficient for Esr2b, a teleost ortholog of ESR2, are not receptive to males but rather court females, despite retaining normal ovarian function with an unaltered sex steroid milieu. Thus, contrary to both prevailing views in rodents and teleosts, E2/Esr2b signaling in the brain plays a decisive role in feminization and demasculinization of female mating behavior and sexual preference in medaka. Further behavioral testing showed that mutual antagonism between E2/Esr2b signaling and androgen receptor-mediated androgen signaling in adulthood induces and actively maintains sex-typical mating behaviors and preference. Our results also revealed that the female-biased sexual dimorphism in esr2b expression in the telencephalic and preoptic nuclei implicated in mating behavior can be reversed between males and females by altering the sex steroid milieu in adulthood, likely via mechanisms involving direct E2-induced transcriptional activation. In addition, Npba, a neuropeptide mediating female sexual receptivity, was found to act downstream of E2/Esr2b signaling in these brain nuclei. Collectively, these functional and regulatory mechanisms of E2/Esr2b signaling presumably underpin the neural mechanism for induction, maintenance, and reversal of sex-typical mating behaviors and sexual preference in teleosts, at least in medaka.
Collapse
Affiliation(s)
- Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Daichi Miyazoe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Rie Togawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Keiko Yokoyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kiyoshi Nakasone
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Masayoshi Miyata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yukiko Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Todo
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaoru Ohno
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Usami
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yoshitaka Nagahama
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
14
|
Yamashita J, Takeuchi A, Hosono K, Fleming T, Nagahama Y, Okubo K. Male-predominant galanin mediates androgen-dependent aggressive chases in medaka. eLife 2020; 9:59470. [PMID: 32783809 PMCID: PMC7423395 DOI: 10.7554/elife.59470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
Recent studies in mice demonstrate that a subset of neurons in the medial preoptic area (MPOA) that express galanin play crucial roles in regulating parental behavior in both sexes. However, little information is available on the function of galanin in social behaviors in other species. Here, we report that, in medaka, a subset of MPOA galanin neurons occurred nearly exclusively in males, resulting from testicular androgen stimulation. Galanin-deficient medaka showed a greatly reduced incidence of male-male aggressive chases. Furthermore, while treatment of female medaka with androgen induced male-typical aggressive acts, galanin deficiency in these females attenuated the effect of androgen on chases. Given their male-biased and androgen-dependent nature, the subset of MPOA galanin neurons most likely mediate androgen-dependent male-male chases. Histological studies further suggested that variability in the projection targets of the MPOA galanin neurons may account for the species-dependent functional differences in these evolutionarily conserved neural substrates.
Collapse
Affiliation(s)
- Junpei Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akio Takeuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Thomas Fleming
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Nagahama
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Trudeau VL, Somoza GM. Multimodal hypothalamo-hypophysial communication in the vertebrates. Gen Comp Endocrinol 2020; 293:113475. [PMID: 32240708 DOI: 10.1016/j.ygcen.2020.113475] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
The vertebrate pituitary is arguably one of the most complex endocrine glands from the evolutionary, anatomical and functional perspectives. The pituitary plays a master role in endocrine physiology for the control of growth, metabolism, reproduction, water balance, and the stress response, among many other key processes. The synthesis and secretion of pituitary hormones are under the control of neurohormones produced by the hypothalamus. Under this conceptual framework, the communication between the hypophysiotropic brain and the pituitary gland is at the foundation of our understanding of endocrinology. The anatomy of the connections between the hypothalamus and the pituitary gland has been described in different vertebrate classes, revealing diverse modes of communication together with varying degrees of complexity. In this context, the evolution and variation in the neuronal, neurohemal, endocrine and paracrine modes will be reviewed in light of recent discoveries, and a re-evaluation of earlier observations. There appears to be three main hypothalamo-pituitary communication systems: 1. Diffusion, best exemplified by the agnathans; 2. Direct innervation of the adenohypophysis, which is most developed in teleost fish, and 3. The median eminence/portal blood vessel system, most conspicuously developed in tetrapods, showing also considerable variation between classes. Upon this basic classification, there exists various combinations possible, giving rise to taxon and species-specific, multimodal control over major physiological processes. Intrapituitary paracrine regulation and communication between folliculostellate cells and endocrine cells are additional processes of major importance. Thus, a more complex evolutionary picture of hypothalamo-hypophysial communication is emerging. There is currently little direct evidence to suggest which neuroendocrine genes may control the evolution of one communication system versus another. However, studies at the developmental and intergenerational timescales implicate several genes in the angiogenesis and axonal guidance pathways that may be important.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| |
Collapse
|
16
|
Kawabata-Sakata Y, Nishiike Y, Fleming T, Kikuchi Y, Okubo K. Androgen-dependent sexual dimorphism in pituitary tryptophan hydroxylase expression: relevance to sex differences in pituitary hormones. Proc Biol Sci 2020; 287:20200713. [PMID: 32517612 DOI: 10.1098/rspb.2020.0713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serotonin is a biogenic monoamine conserved across phyla that is implicated in diverse physiological and behavioural functions. On examining the expression of the rate-limiting enzymes in serotonin synthesis, tryptophan hydroxylases (TPHs), in the teleost medaka (Oryzias latipes), we found that males have much higher levels of tph1 expression as compared with females. This robust sexual dimorphism was found to probably result from the direct stimulation of tph1 transcription by androgen/androgen receptor binding to canonical bipartite androgen-responsive elements in its proximal promoter region. Our results further revealed that tph1 expression occurs exclusively in pro-opiomelanocortin (pomc)-expressing cells and that the resulting serotonin and its derivative melatonin inhibit the expression of the pituitary hormone genes, fshb, sl and tshb. This suggests that serotonin and/or melatonin synthesized in pomc-expressing cells act in a paracrine manner to suppress pituitary hormone levels. Consistent with these findings and the male-biased expression of tph1, the expression levels of fshb, sl and tshb were all higher in females than in males. Taken together, the male bias in tph1 expression and consequent serotonin/melatonin production presumably contribute to sex differences in the expression of pituitary hormones and ultimately in the physiological functions mediated by them.
Collapse
Affiliation(s)
- Yukika Kawabata-Sakata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.,Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo 160-8402, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Thomas Fleming
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yukiko Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|