1
|
Fu S, Zhang Y, Jiao Y, Wang Q, Deng Y, Du X. The role of Pm-miR-184-3p in regulating the immune response in the pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109658. [PMID: 38801841 DOI: 10.1016/j.fsi.2024.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
microRNAs are a class of non-coding RNAs with post-transcriptional regulatory functions in eukaryotes. In our previous study, miR-184-3p was identified in the hemocyte transcriptome of Pinctada fucata martensii (Pm-miR-184-3p), and its expression was shown to be up-regulated following transplantation surgery; however, its role in regulating transplantation immunity has not yet been clarified. Here, the role of Pm-miR-184-3p in regulating the immune response of P. f. martensii was studied. The expression of Pm-miR-184-3p increased following the stimulation of pathogen-associated molecular patterns, and Pm-miR-184-3p overexpression increased the activity of antioxidant-related enzymes, such as superoxide dismutase and catalase. Transcriptome analysis obtained 1096 differentially expressed genes (DEGs) after overexpression of Pm-miR-184-3p, and these DEGs were significantly enriched in conserved pathways such as the Cell cycle pathway and NF-kappa B signaling pathway, as well as GO terms including base excision repair, cell cycle, and DNA replication, suggesting that Pm-miR-184-3p could enhance the inflammation process. Target prediction and dual luciferase analysis revealed that pro-inflammatory related genes Pm-TLR3 and Pm-FN were the potential target of Pm-miR-184-3p. We speculate that Pm-miR-184-3p may utilize negative regulation of target genes to delay the activation of corresponding immune pathways, potentially preventing excessive inflammatory responses and achieving a delicate balance within the organism. Overall, Pm-miR-184-3p play a key role in regulating cellular responses to transplantation. Our findings provide new insights into the immune response of P. f. martensii to transplantation.
Collapse
Affiliation(s)
- Shirong Fu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Liu H, Tan S, Han S, Liu X, Li Z, Wang N, Wu Z, Ma J, Shi K, Wang W, Sha Z. Effects of miR-722 on gene expression and alternative splicing in the liver of half-smooth tongue sole after infection with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109275. [PMID: 38081443 DOI: 10.1016/j.fsi.2023.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/31/2023]
Abstract
MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.
Collapse
Affiliation(s)
- Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
3
|
Zhang J, Sun Z, Su W, Wang Z, Meng W, Chang Y. A signal recognition particle receptor gene from the sea cucumber, Apostichopus japonicas. Sci Rep 2023; 13:22973. [PMID: 38151522 PMCID: PMC10752883 DOI: 10.1038/s41598-023-50320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
The signal recognition particle (SRP) system delivers approximately 30% of the proteome to the endoplasmic reticulum (ER) membrane. SRP receptor alpha (SRα) binds to SRP for targeting nascent secreted proteins to the ER membrane in eukaryotic cells. In this study, the SRα homologous gene was identified in the sea cucumber, Apostichopus japonicus (AjSRα). AjSRα codes for 641 amino acids and has 54.94% identity with its mammalian homologs. Like mammalian SRα, it is expected to contain the SRP-alpha N domain, SRP54_N domain, and SRP54 domain. In addition, AjSRα is ubiquitously expressed in adult tissues and exhibits a sexually dimorphic expression pattern, with significantly higher expression in ovaries compared to testes. As a maternal factor, AjSRα can be continuously detected during embryonic development. Importantly, we first attempted to investigate its function by using lentiviral vectors for delivering SRα gene-specific shRNA, and we revealed that lentiviral vectors do not induce an upregulation of immune-related enzymes in sea cucumbers. However, compared to the dsRNA-based RNA interference (RNAi) method, lentivirus-mediated RNAi caused dynamic changes in gene expression at a later time. This study supplied the technical support for studying the functional mechanism of SRα in sea cucumbers.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zhihui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Weiyi Su
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zengdong Wang
- Shandong Anyuan Aquaculture Co. Ltd, Yantai, 264000, China
| | - Weihan Meng
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Wahl M, Levy T, Ventura T, Sagi A. Monosex Populations of the Giant Freshwater Prawn Macrobrachium rosenbergii-From a Pre-Molecular Start to the Next Generation Era. Int J Mol Sci 2023; 24:17433. [PMID: 38139271 PMCID: PMC10743721 DOI: 10.3390/ijms242417433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Sexual manipulation in the giant freshwater prawn Macrobrachium rosenbergii has proven successful in generating monosex (both all-male and all-female) populations for aquaculture using a crustacean-specific endocrine gland, the androgenic gland (AG), which serves as a key masculinizing factor by producing and secreting an insulin-like AG hormone (IAG). Here, we provide a summary of the advancements from the discovery of the AG and IAG in decapods through to the development of monosex populations in M. rosenbergii. We discuss the broader sexual development pathway, which is highly divergent across decapods, and provide our future perspective on the utility of novel genetic and genomic tools in promoting refined approaches towards monosex biotechnology. Finally, the future potential benefits of deploying monosex prawn populations for environmental management are discussed.
Collapse
Affiliation(s)
- Melody Wahl
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
5
|
Zhu D, Feng T, Mo N, Han R, Lu W, Cui Z. Eriocheir sinensis feminization-1c ( Fem-1c) and Its Predicted miRNAs Involved in Sexual Development and Regulation. Animals (Basel) 2023; 13:1813. [PMID: 37889731 PMCID: PMC10251896 DOI: 10.3390/ani13111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Feminization-1c (Fem-1c) is important for sex differentiation in the model organism Caenorhabditis elegans. In our previous study, the basic molecular characteristics of the Fem-1c gene (EsFem-1c) in Eriocheir sinensis (Henri Milne Edwards, 1854) were cloned to determine the relationship with sex differentiation. In this study, the genomic sequence of EsFem-1c contained five exons and four introns, with an exceptionally long 3'UTR sequence. The qRT-PCR results of EsFem-1c demonstrated lower tissue expression in the androgenic gland of the intersex crab than the normal male crab, implying that EsFem-1c plays a role in crab AG development. RNA interference experiments and morphological observations of juvenile and mature crabs indicated that EsFem-1c influences sexual development in E. sinensis. A dual-luciferase reporter assay disclosed that tcf-miR-315-5p effectively inhibits the translation of the EsFem-1c gene, influencing male development. An intriguing finding was that miRNA tcf-miR-307 could increase EsFem-1c expression by binding to the alternative splicing region with a length of 248 bp (ASR-248) in the 3'UTR sequence. The present research contributes to a better understanding of the molecular regulation mechanism of EsFem-1c and provides a resource for future studies of the miRNA-mediated regulation of sexual development and regulation in E. sinensis.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Tianyi Feng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Rui Han
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Wentao Lu
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; (D.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- DECAPODA Biology Science and Technology Co., Ltd. (Lianyungang), Lianyungang 222000, China
| |
Collapse
|