1
|
Olagunju TA, Rosen BD, Neibergs HL, Becker GM, Davenport KM, Elsik CG, Hadfield TS, Koren S, Kuhn KL, Rhie A, Shira KA, Skibiel AL, Stegemiller MR, Thorne JW, Villamediana P, Cockett NE, Murdoch BM, Smith TPL. Telomere-to-telomere assemblies of cattle and sheep Y-chromosomes uncover divergent structure and gene content. Nat Commun 2024; 15:8277. [PMID: 39333471 PMCID: PMC11436988 DOI: 10.1038/s41467-024-52384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. Here, we assemble complete and gapless telomere to telomere (T2T) Y chromosomes for these species. We find that the pseudo-autosomal regions are similar in length, but the total chromosome size is substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity is accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 19MYA. The centromeres also differ dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosomes have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.
Collapse
Affiliation(s)
- Temitayo A Olagunju
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory (AGIL), ARS, USDA, Beltsville, MD, USA
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Christine G Elsik
- Divisions of Animal Sciences and Plant Science & Technology, University of Missouri, Columbia, MO, USA
| | - Tracy S Hadfield
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen L Kuhn
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katie A Shira
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Patricia Villamediana
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Noelle E Cockett
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA.
| | - Timothy P L Smith
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA.
| |
Collapse
|
2
|
Fontana S, Chang NC, Chang T, Lee CC, Dang VD, Wang J. The fire ant social supergene is characterized by extensive gene and transposable element copy number variation. Mol Ecol 2019; 29:105-120. [PMID: 31736148 DOI: 10.1111/mec.15308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 01/10/2023]
Abstract
In the fire ant Solenopsis invicta, a supergene composed of ~600 genes and having two variants, SB and Sb, regulates colony social form. In single queen colonies, all individuals carry only the SB allele, while in multiple queen colonies, some individuals carry the Sb allele. In this study, we characterized genes with copy number variation between SB and Sb-carrying individuals. We showed extensive acquisition of gene duplicates in the Sb genome, with some likely involved in polygyne-related phenotypes. We found 260 genes with copy number differences between SB and Sb, of which 239 have greater copy number in Sb. We observed transposable element (TE) accumulation on Sb, likely due to the accumulation of repetitive elements on the nonrecombining chromosome. We found a weak correlation between TE copy number and differential expression, suggesting some TEs may still be proliferating in Sb while many of the duplicated TEs have presumably been silenced. Among the 115 non-TE genes with higher copy in Sb, enzymes responsible for cuticular hydrocarbon synthesis were highly represented. These include a desaturase and an elongase, both potentially responsible for differential queen odour and likely beneficial for polygyne ants. These genes seem to have translocated into the supergene from other chromosomes and proliferated by multiple duplication events. While the presence of TEs in supergenes is well documented, little is known about duplication of non-TE genes and their possible adaptive role. Overall, our results suggest that gene duplications may be an important factor leading to monogyne and polygyne ant societies.
Collapse
Affiliation(s)
- Silvia Fontana
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Biodiversity Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ni-Chen Chang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Tiffany Chang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Chi Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Viet-Dai Dang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Biodiversity Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Abstract
Mammalian sex chromosomes evolved from an ordinary pair of autosomes. The X chromosome is highly conserved, whereas the Y chromosome varies among species in size, structure, and gene content. Unlike autosomes that contain randomly mixed collections of genes, the sex chromosomes are enriched in testis-biased genes related to sexual development and reproduction, particularly in spermatogenesis and male fertility. This review focuses on how sex chromosome dosage compensation takes place and why meiotic sex chromosome inactivation occurs during spermatogenesis. Furthermore, the review also emphasizes how testis-biased genes are enriched on the sex chromosomes and their functions in male fertility. It is concluded that sex chromosomes are critical to sexual development and male fertility; however, our understanding of how sex chromosome genes direct sexual development and fertility has been hampered by the structural complexities of the sex chromosomes and by the multicopy nature of the testis gene families that also play a role in immunity, cancer development, and brain function.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Di Lorenzo P, Lancioni H, Ceccobelli S, Curcio L, Panella F, Lasagna E. Uniparental genetic systems: a male and a female perspective in the domestic cattle origin and evolution. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Murata C, Kuroki Y, Imoto I, Kuroiwa A. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki. Chromosome Res 2016; 24:407-19. [DOI: 10.1007/s10577-016-9531-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022]
|
6
|
Yue XP, Dechow C, Chang TC, DeJarnette JM, Marshall CE, Lei CZ, Liu WS. Copy number variations of the extensively amplified Y-linked genes, HSFY and ZNF280BY, in cattle and their association with male reproductive traits in Holstein bulls. BMC Genomics 2014; 15:113. [PMID: 24507556 PMCID: PMC3924399 DOI: 10.1186/1471-2164-15-113] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/04/2014] [Indexed: 02/04/2023] Open
Abstract
Background Recent transcriptomic analysis of the bovine Y chromosome revealed at least six multi-copy protein coding gene families, including TSPY, HSFY and ZNF280BY, on the male-specific region (MSY). Previous studies indicated that the copy number variations (CNVs) of the human and bovine TSPY were associated with male fertility in men and cattle. However, the relationship between CNVs of the bovine Y-linked HSFY and ZNF280BY gene families and bull fertility has not been investigated. Results We investigated the copy number (CN) of the bovine HSFY and ZNF280BY in a total of 460 bulls from 15 breeds using a quantitative PCR approach. We observed CNVs for both gene families within and between cattle breeds. The median copy number (MCN) of HSFY among all bulls was 197, ranging from 21 to 308. The MCN of ZNF280BY was 236, varying from 28 to 380. Furthermore, bulls in the Bos taurus (BTA) lineage had a significantly higher MCN (202) of HSFY than bulls in the Bos indicus (BIN) lineage (178), while taurine bulls had a significantly lower MCN (231) of ZNF280BY than indicine bulls (284). In addition, the CN of ZNF280BY was positively correlated to that of HSFY on the BTAY. Association analysis revealed that the CNVs of both HSFY and ZNF280BY were correlated negatively with testis size, while positively with sire conception rate. Conclusion The bovine HSFY and ZNF280BY gene families have extensively expanded on the Y chromosome during evolution. The CN of both gene families varies significantly among individuals and cattle breeds. These variations were associated with testis size and bull fertility in Holstein, suggesting that the CNVs of HSFY and ZNF280BY may serve as valuable makers for male fertility selection in cattle.
Collapse
Affiliation(s)
| | | | | | | | | | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | |
Collapse
|
7
|
Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. Proc Natl Acad Sci U S A 2013; 110:12373-8. [PMID: 23842086 DOI: 10.1073/pnas.1221104110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The male-specific region of the mammalian Y chromosome (MSY) contains clusters of genes essential for male reproduction. The highly repetitive and degenerative nature of the Y chromosome impedes genomic and transcriptomic characterization. Although the Y chromosome sequence is available for the human, chimpanzee, and macaque, little is known about the annotation and transcriptome of nonprimate MSY. Here, we investigated the transcriptome of the MSY in cattle by direct testis cDNA selection and RNA-seq approaches. The bovine MSY differs radically from the primate Y chromosomes with respect to its structure, gene content, and density. Among the 28 protein-coding genes/families identified on the bovine MSY (12 single- and 16 multicopy genes), 16 are bovid specific. The 1,274 genes identified in this study made the bovine MSY gene density the highest in the genome; in comparison, primate MSYs have only 31-78 genes. Our results, along with the highly transcriptional activities observed from these Y-chromosome genes and 375 additional noncoding RNAs, challenge the widely accepted hypothesis that the MSY is gene poor and transcriptionally inert. The bovine MSY genes are predominantly expressed and are differentially regulated during the testicular development. Synonymous substitution rate analyses of the multicopy MSY genes indicated that two major periods of expansion occurred during the Miocene and Pliocene, contributing to the adaptive radiation of bovids. The massive amplification and vigorous transcription suggest that the MSY serves as a genomic niche regulating male reproduction during bovid expansion.
Collapse
|
8
|
Why chromosome palindromes? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:207958. [PMID: 22844637 PMCID: PMC3403216 DOI: 10.1155/2012/207958] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 05/09/2012] [Indexed: 11/25/2022]
Abstract
We look at sex-limited chromosome (Y or W) evolution with particular emphasis on the importance of palindromes. Y chromosome palindromes consist of inverted duplicates that allow for local recombination in an otherwise nonrecombining chromosome. Since palindromes enable intrachromosomal gene conversion that can help eliminate deleterious mutations, they are often highlighted as mechanisms to protect against Y degeneration. However, the adaptive significance of recombination resides in its ability to decouple the evolutionary fates of linked mutations, leading to both a decrease in degeneration rate and an increase in adaptation rate. Our paper emphasizes the latter, that palindromes may exist to accelerate adaptation by increasing the potential targets and fixation rates of incoming beneficial mutations. This hypothesis helps reconcile two enigmatic features of the “palindromes as protectors” view: (1) genes that are not located in palindromes have been retained under purifying selection for tens of millions of years, and (2) under models that only consider deleterious mutations, gene conversion benefits duplicate gene maintenance but not initial fixation. We conclude by looking at ways to test the hypothesis that palindromes enhance the rate of adaptive evolution of Y-linked genes and whether this effect can be extended to palindromes on other chromosomes.
Collapse
|
9
|
Hamilton CK, Verduzco-Gómez AR, Favetta LA, Blondin P, King WA. Testis-specific protein Y-encoded copy number is correlated to its expression and the field fertility of Canadian Holstein bulls. Sex Dev 2012; 6:231-9. [PMID: 22688524 DOI: 10.1159/000338938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2012] [Indexed: 11/19/2022] Open
Abstract
Testis-specific protein Y-encoded (TSPY) is present in varying copy number in both human (20-76 copies) and cattle (37-200 copies), and some studies have linked this variation to semen quality in men. The purpose of this study was to determine if TSPY copy number is associated with fertility in bulls by using adjusted non-return rates, a commonly used measure of field fertility in Canada. In addition, we investigated the associations between TSPY copy number and its expression as well as specific semen parameters, such as average sperm concentration, sperm count, ejaculate volume, and motility. In 2 independent trials, TSPY copy number was shown to be positively correlated to adjusted non-return rates (trial #1: Spearman r = 0.34, p < 0.05; trial #2: Spearman r = 0.77, p < 0.01). Furthermore, TSPY copy number was inversely correlated to TSPY mRNA expression in the testis (Pearson r = -0.71, p < 0.0001). There were no correlations of TSPY copy number or expression with the semen parameters measured. Therefore, TSPY copy number might represent a potential marker of bull fertility, but its mechanism does not appear to be directly related to the semen characteristics analyzed as part of this study.
Collapse
Affiliation(s)
- C K Hamilton
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada
| | | | | | | | | |
Collapse
|
10
|
Gallach M, Domingues S, Betrán E. Gene duplication and the genome distribution of sex-biased genes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:989438. [PMID: 21904687 PMCID: PMC3167187 DOI: 10.4061/2011/989438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/26/2011] [Accepted: 06/05/2011] [Indexed: 12/04/2022]
Abstract
In species that have two sexes, a single genome encodes two morphs, as each sex can be thought of as a distinct morph. This means that the same set of genes are differentially expressed in the different sexes. Many questions emanate from this statement. What proportion of genes contributes to sexual dimorphism? How do they contribute to sexual dimorphism? How is sex-biased expression achieved? Which sex and what tissues contribute the most to sex-biased expression? Do sex-biased genes have the same evolutionary patterns as nonbiased genes? We review the current data on sex-biased expression in species with heteromorphic sex chromosomes and comment on the most important hypotheses suggested to explain the origin, evolution, and distribution patterns of sex-biased genes. In this perspective we emphasize how gene duplication serves as an important molecular mechanism to resolve genomic clashes and genetic conflicts by generating sex-biased genes, often sex-specific genes, and contributes greatly to the underlying genetic basis of sexual dimorphism.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, P.O. Box 19498, Arlington, TX 76019, USA
| | | | | |
Collapse
|
11
|
Yang Y, Chang TC, Yasue H, Bharti AK, Retzel EF, Liu WS. ZNF280BY and ZNF280AY: autosome derived Y-chromosome gene families in Bovidae. BMC Genomics 2011; 12:13. [PMID: 21214936 PMCID: PMC3032696 DOI: 10.1186/1471-2164-12-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/07/2011] [Indexed: 12/14/2022] Open
Abstract
Background Recent progress in exploring the Y-chromosome gene content in humans, mice and cats have suggested that "autosome-to-Y" transposition of the male fertility genes is a recurrent theme during the mammalian Y-chromosome evolution. These transpositions are lineage-dependent. The purpose of this study is to investigate the lineage-specific Y-chromosome genes in bovid. Results We took a direct testis cDNA selection strategy and discovered two novel gene families, ZNF280BY and ZNF280AY, on the bovine (Bos taurus) Y-chromosome (BTAY), which originated from the transposition of a gene block on the bovine chromosome 17 (BTA17) and subsequently amplified. Approximately 130 active ZNF280BY loci (and ~240 pseudogenes) and ~130 pseudogenized ZNF280AY copies are present over the majority of the male-specific region (MSY). Phylogenetic analysis indicated that both gene families fit with the "birth-and-death" model of evolution. The active ZNF280BY loci share high sequence similarity and comprise three major genomic structures, resulted from insertions/deletions (indels). Assembly of a 1.2 Mb BTAY sequence in the MSY ampliconic region demonstrated that ZNF280BY and ZNF280AY, together with HSFY and TSPY families, constitute the major elements within the repeat units. The ZNF280BY gene family was found to express in different developmental stages of testis with sense RNA detected in all cell types of the seminiferous tubules while the antisense RNA detected only in the spermatids. Deep sequencing of the selected cDNAs revealed that different loci of ZNF280BY were differentially expressed up to 60-fold. Interestingly, different copies of the ZNF280AY pseudogenes were also found to differentially express up to 10-fold. However, expression level of the ZNF280AY pseudogenes was almost 6-fold lower than that of the ZNF280BY genes. ZNF280BY and ZNF280AY gene families are present in bovid, but absent in other mammalian lineages. Conclusions ZNF280BY and ZNF280AY are lineage-specific, multi-copy Y-gene families specific to Bovidae, and are derived from the transposition of an autosomal gene block. The temporal and spatial expression patterns of ZNF280BYs in testis suggest a role in spermatogenesis. This study offers insights into the genomic organization of the bovine MSY and gene regulation in spermatogenesis, and provides a model for studying evolution of multi-copy gene families in mammals.
Collapse
Affiliation(s)
- Yang Yang
- Department of Dairy and Animal Science, The Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
12
|
Connallon T, Clark AG. Gene duplication, gene conversion and the evolution of the Y chromosome. Genetics 2010; 186:277-86. [PMID: 20551442 PMCID: PMC2940292 DOI: 10.1534/genetics.110.116756] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/31/2010] [Indexed: 11/18/2022] Open
Abstract
Nonrecombining chromosomes, such as the Y, are expected to degenerate over time due to reduced efficacy of natural selection compared to chromosomes that recombine. However, gene duplication, coupled with gene conversion between duplicate pairs, can potentially counteract forces of evolutionary decay that accompany asexual reproduction. Using a combination of analytical and computer simulation methods, we explicitly show that, although gene conversion has little impact on the probability that duplicates become fixed within a population, conversion can be effective at maintaining the functionality of Y-linked duplicates that have already become fixed. The coupling of Y-linked gene duplication and gene conversion between paralogs can also prove costly by increasing the rate of nonhomologous crossovers between duplicate pairs. Such crossovers can generate an abnormal Y chromosome, as was recently shown to reduce male fertility in humans. The results represent a step toward explaining some of the more peculiar attributes of the human Y as well as preliminary Y-linked sequence data from other mammals and Drosophila. The results may also be applicable to the recently observed pattern of tetraploidy and gene conversion in asexual, bdelloid rotifers.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA.
| | | |
Collapse
|
13
|
Schubert S, Schmidtke J. Transgenic Mouse Studies to Understand the Regulation, Expression and Function of the Testis-Specific Protein Y-Encoded (TSPY) Gene. Genes (Basel) 2010; 1:244-62. [PMID: 24710044 PMCID: PMC3954093 DOI: 10.3390/genes1020244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 11/29/2022] Open
Abstract
The TSPY gene, which encodes the testis-specific protein, Y-encoded, was first discovered and characterized in humans, but orthologous genes were subsequently identified on the Y chromosome of many other placental mammals. TSPY is expressed in the testis and to a much lesser extent in the prostate gland, and it is assumed that TSPY serves function in spermatogonial proliferation and/or differentiation. It is further supposed that TSPY is involved in male infertility and exerts oncogenic effects in gonadal and prostate tumor formation. As a member of the TSPY/SET/NAP protein family, TSPY is able to bind cyclin B types, and stimulates the cyclin B1-CDK1 kinase activity, thereby accelerating the G2/M phase transition of the cell cycle of target cells. Because the laboratory mouse carries only a nonfunctional Y-chromosomal Tspy-ps pseudogene, a knockout mouse model for functional research analyses is not a feasible approach. In the last decade, three classical transgenic mouse models have been developed to contribute to our understanding of TSPY regulation, expression and function. The different transgenic mouse approaches and their relevance for studying TSPY regulation, expression and function are discussed in this review.
Collapse
Affiliation(s)
- Stephanie Schubert
- Institute of Human Genetics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Jörg Schmidtke
- Institute of Human Genetics, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
14
|
Schubert S, Kamino K, Böhm D, Adham I, Engel W, Wasielewski RV, Moharregh-Khiabani D, Mauceri G, Vaske B, Meinhardt A, Schöner A, Gonzalez-Fassrainer D, Schmidtke J. TSPY Expression Is Variably Altered in Transgenic Mice with Testicular Feminization1. Biol Reprod 2008; 79:125-33. [DOI: 10.1095/biolreprod.107.067025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
15
|
Karwacki V, Kovac J, Mauceri G, Backhaus A, Föhse L, Schmidtke J, Schubert S. Tspy is nonfunctional in the Mongolian gerbil but functional in the Syrian hamster. Genomics 2006; 88:65-73. [PMID: 16626932 DOI: 10.1016/j.ygeno.2006.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 03/06/2006] [Accepted: 03/10/2006] [Indexed: 11/18/2022]
Abstract
The TSPY gene is conserved in placental mammals and encodes the testis-specific protein, Y encoded. Within the testis, TSPY expression is restricted to germ cells, and it is assumed that TSPY plays a role in the proliferation of germ cells. Since it was first discovered in humans, TSPY orthologous gene families have been subsequently characterized in many mammalian lineages. In contrast to the situation in cattle and primates, in which TSPY is organized in a moderately repetitive cluster, including functional members and pseudogenes, a peculiar situation is observed in rodents, in which Tspy has been become low or single copy and degenerated to a pseudogene in some species of the subgenus Mus. We have extended this approach and investigated Tspy gene evolution in the Syrian hamster (Mesocricetus auratus) and the Mongolian gerbil (Meriones unguiculatus). Whereas the Syrian hamster Tspy is functionally conserved, organized in multiple copies, and expressed only in testis, the closely related Mongolian gerbil possesses a single-copy pseudogene that is unable to generate a functional transcript. Thus, the Tspy locus has degenerated at least twice at different points of rodent evolution, strongly supporting the hypothesis that the decay of Y-chromosomal genes is an intrinsic evolutionary process. TSPY is the first example of a Y-chromosomal tandem repetitive gene whose decay could be studied in two independent mammalian lineages.
Collapse
Affiliation(s)
- Violetta Karwacki
- Institute of Human Genetics, Medical School Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Oram SW, Liu XX, Lee TL, Chan WY, Lau YFC. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 2006; 6:154. [PMID: 16762081 PMCID: PMC1526451 DOI: 10.1186/1471-2407-6-154] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/09/2006] [Indexed: 01/09/2023] Open
Abstract
Background TSPY is a repeated gene mapped to the critical region harboring the gonadoblastoma locus on the Y chromosome (GBY), the only oncogenic locus on this male-specific chromosome. Elevated levels of TSPY have been observed in gonadoblastoma specimens and a variety of other tumor tissues, including testicular germ cell tumors, prostate cancer, melanoma, and liver cancer. TSPY contains a SET/NAP domain that is present in a family of cyclin B and/or histone binding proteins represented by the oncoprotein SET and the nucleosome assembly protein 1 (NAP1), involved in cell cycle regulation and replication. Methods To determine a possible cellular function for TSPY, we manipulated the TSPY expression in HeLa and NIH3T3 cells using the Tet-off system. Cell proliferation, colony formation assays and tumor growth in nude mice were utilized to determine the TSPY effects on cell growth and tumorigenesis. Cell cycle analysis and cell synchronization techniques were used to determine cell cycle profiles. Microarray and RT-PCR were used to investigate gene expression in TSPY expressing cells. Results Our findings suggest that TSPY expression increases cell proliferation in vitro and tumorigenesis in vivo. Ectopic expression of TSPY results in a smaller population of the host cells in the G2/M phase of the cell cycle. Using cell synchronization techniques, we show that TSPY is capable of mediating a rapid transition of the cells through the G2/M phase. Microarray analysis demonstrates that numerous genes involved in the cell cycle and apoptosis are affected by TSPY expression in the HeLa cells. Conclusion These data, taken together, have provided important insights on the probable functions of TSPY in cell cycle progression, cell proliferation, and tumorigenesis.
Collapse
Affiliation(s)
- Shane W Oram
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
| | - Xing Xing Liu
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
| | - Tin-Lap Lee
- Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wai-Yee Chan
- Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Fai Chris Lau
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
- Laboratory of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, 111C5, 4150 Clement St, San Francisco, CA 94121, USA
| |
Collapse
|