1
|
Hamzah SN, Avicor SW, Alias Z, Razak SA, Bakhori SKM, Hsieh TC, Syanizam NN, Farouk SA. In Vivo Glutathione S-Transferases Superfamily Proteome Analysis: An Insight into Aedes albopictus Mosquitoes upon Acute Xenobiotic Challenges. INSECTS 2022; 13:1028. [PMID: 36354852 PMCID: PMC9698486 DOI: 10.3390/insects13111028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, the induction of glutathione S-transferase (GST) enzymatic activities in Aedes albopictus under 24 h of xenobiotic challenges was investigated. From LCMS analysis, 23 GST isoforms were identified under Delta, Epsilon, Sigma, Zeta, Omega, and Iota classes, together with one GSTX1-1 isoform, in both treated and untreated samples. Using STRING 11.5, the functional enrichment network of Gene Ontology (GO) analysis, the identified peptides were found to be involved in the glutathione metabolic biological process (GO:0006749, p-value: 1.93 × 10−29), and the molecular functions involved are due to glutathione transferase (GO:0016848, p-value: 2.92 × 10−8) aside from carbon-halide lyase activity (GO:004364, p-value: 1.21 × 10−31). The Protein-Protein Interaction (PPI) network (STRING 11.5) showed significant interactions within the GST superfamily and some of the GST classes interacted with other proteins among the input domain of the identified peptides (p-value < 1.0 × 10−16). In TMT labeling for the quantification of peptide abundance, isoforms from Delta (GSTD1-2, GSTD1-3, GSTD1-4) and Epsilon (GSTE3-1, GSTE4-2) were found to be overexpressed (between 1.5-fold and 2-fold changes). In the PPI analysis, 12 common enriched pathways of Kyoto Encyclopedia of Genes and Genomes (KEGG) were found to be intercorrelated with the identified GSTs at PPI enrichment p-value < 1.0 × 10−16. Overall, this study indicates that distinct GST enzymes, which were identified up to their specific protein isoforms, are involved in the metabolic mechanisms underlying xenobiotic stress.
Collapse
Affiliation(s)
- Siti Nasuha Hamzah
- School of Biological Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| | - Silas Wintuma Avicor
- Entomology Division, Cocoa Research Institute of Ghana, New Tafo-Akim P.O. Box 8, Ghana
| | - Zazali Alias
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sarah Abdul Razak
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Ting Chuan Hsieh
- School of Biological Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| | - Nurin Nazifa Syanizam
- School of Biological Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| | - Salinah Abdul Farouk
- School of Biological Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| |
Collapse
|
2
|
Alam I, Batool K, Idris AL, Tan W, Guan X, Zhang L. Function of CTLGA9 Amino Acid Residue Leucine-6 in Modulating Cry Toxicity. Front Immunol 2022; 13:906259. [PMID: 35865517 PMCID: PMC9294448 DOI: 10.3389/fimmu.2022.906259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Aedes aegypti is a crucial vector for many arboviral diseases that cause millions of deaths worldwide and thus is of major public health concern. Crystal (Cry) proteins, which are toxins produced by Bacillus thuringiensis, are structurally organized into three-domains, of which domain II is the most variable in terms of binding towards various toxin receptors. The binding of Cry11Aa to putative receptor such as aminopeptidase-N (APN) is explicitly inhibited by midgut C-type lectins (CTLs). The similarity between the domain II fold of Cry11Aa toxin and the carbohydrate recognition domain in the CTLs is a possible structural basis for the involvement of Cry domain II in the recognition of carbohydrates on toxin receptors. In this study, a site-directed point mutation was introduced into the A. aegypti CTLGA9 gene on the basis of molecular docking findings, leading to substitution of the Leucine-6 (Leu-6) residue in the protein with alanine. Subsequently, functional monitoring of the mutated protein was carried out. Unlike the amino acid residues of wild-type CTLGA9, none of the residues of mutant (m) CTLGA9 were competed with Cry11Aa for binding to the APN receptor interface. Additionally, ligand blot analysis showed that both wild-type and mutant CTLGA9 had similar abilities to bind to APN and Cry11Aa. Furthermore, in the competitive ELISA in which labeled mutant CTLGA9 (10 nM) was mixed with increasing concentrations of unlabeled Cry11Aa (0–500 nM), the mutant showed no competition with Cry11Aa for binding to APN., By contrast, in the positive control sample of labeled wild type CTLGA9 mixed with same concentrations of Cry11Aa competition between the two ligands for binding to the APN was evident. These results suggest that Leucine-6 may be the key site involved in the competitive receptor binding between CTLGA9 and Cry11Aa. Moreover, according to the bioassay results, mutant CTLGA9 could in fact enhance the toxicity of Cry11Aa. Our novel findings provide further insights into the mechanism of Cry toxicity as well as a theoretical basis for enhancing the mosquitocidal activity of these toxin through molecular modification strategies.
Collapse
Affiliation(s)
- Intikhab Alam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Lingling Zhang,
| |
Collapse
|
3
|
Cattel J, Haberkorn C, Laporte F, Gaude T, Cumer T, Renaud J, Sutherland IW, Hertz JC, Bonneville J, Arnaud V, Fustec B, Boyer S, Marcombe S, David J. A genomic amplification affecting a carboxylesterase gene cluster confers organophosphate resistance in the mosquito Aedes aegypti: From genomic characterization to high-throughput field detection. Evol Appl 2021; 14:1009-1022. [PMID: 33897817 PMCID: PMC8061265 DOI: 10.1111/eva.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
By altering gene expression and creating paralogs, genomic amplifications represent a key component of short-term adaptive processes. In insects, the use of insecticides can select gene amplifications causing an increased expression of detoxification enzymes, supporting the usefulness of these DNA markers for monitoring the dynamics of resistance alleles in the field. In this context, the present study aims to characterize a genomic amplification event associated with resistance to organophosphate insecticides in the mosquito Aedes aegypti and to develop a molecular assay to monitor the associated resistance alleles in the field. An experimental evolution experiment using a composite population from Laos supported the association between the over-transcription of multiple contiguous carboxylesterase genes on chromosome 2 and resistance to multiple organophosphate insecticides. Combining whole genome sequencing and qPCR on specific genes confirmed the presence of a ~100-Kb amplification spanning at least five carboxylesterase genes at this locus with the co-existence of multiple structural duplication haplotypes. Field data confirmed their circulation in South-East Asia and revealed high copy number polymorphism among and within populations suggesting a trade-off between this resistance mechanism and associated fitness costs. A dual-color multiplex TaqMan assay allowing the rapid detection and copy number quantification of this amplification event in Ae. aegypti was developed and validated on field populations. The routine use of this novel assay will improve the tracking of resistance alleles in this major arbovirus vector.
Collapse
Affiliation(s)
- Julien Cattel
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
- Present address:
Symbiosis Technologies for Insect Control (SymbioTIC)Plateforme de Recherche CyroiSte ClotildeFrance
| | - Chloé Haberkorn
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Fréderic Laporte
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Tristan Cumer
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Julien Renaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Ian W. Sutherland
- United States Navy Entomology. Center of ExcellenceNAS JacksonvilleJacksonvilleFLUSA
| | | | - Jean‐Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Victor Arnaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Bénédicte Fustec
- Department of MicrobiologyKhon Kaen UniversityKhon KaenThailand
- Institut de Recherche pour le DéveloppementUMR IRD 224‐CNRS 5290‐Université MontpellierMontpellier Cedex 5France
| | - Sébastien Boyer
- Medical and Veterinary EntomologyInstitut Pasteur du CambodgePhnom PenhCambodia
| | - Sébastien Marcombe
- Medical Entomology and Vector‐Borne Disease LaboratoryInstitut Pasteur du LaosVientianeLaos
| | - Jean‐Philippe David
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| |
Collapse
|
4
|
Benelli G, Wilke ABB, Bloomquist JR, Desneux N, Beier JC. Overexposing mosquitoes to insecticides under global warming: A public health concern? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143069. [PMID: 33127158 DOI: 10.1016/j.scitotenv.2020.143069] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 05/26/2023]
Abstract
The combined effect of global warming and insecticide exposure on the spread of mosquito-borne diseases is poorly studied. In our opinion, more resources should be diverted to this topic to further research efforts and deal with this increasing threat. It is particularly important to determine how Aedes, Anopheles, and Culex vector species cope with insecticide exposure under warming temperatures, as well as how both stressors may impact the activity of mosquito biocontrol agents. Herein, we promote a discussion on the topic, fostering a research agenda with insights for the longer-term implementation of mosquito control strategies under the Integrated Vector Management framework.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - André B B Wilke
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey R Bloomquist
- Neurotoxicology Laboratory, Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicolas Desneux
- University Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Sugimoto N, Takahashi A, Ihara R, Itoh Y, Jouraku A, Van Leeuwen T, Osakabe M. QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex II inhibitors in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103410. [PMID: 32442626 DOI: 10.1016/j.ibmb.2020.103410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The acaricides cyflumetofen, cyenopyrafen, and pyflubumide act as inhibitors of the mitochondrial electron transport system at complex II (succinate dehydrogenase; SDH), a new mode of action in arthropods. The development and mechanisms of low-level resistance against cyenopyrafen and cyflumetofen have been previously reported in Tetranychus urticae. In the present study, we investigated high levels of resistance against three SDH inhibitors in T. urticae field populations and clarify the genetic basis of resistance using quantitative trait locus (QTL) analysis. First, we constructed a microsatellite linkage map comprising 64 markers assembled into three linkage groups (LGs) with total length of 683.8 cM and average marker spacing of 11.03 cM. We then used the linkage map to perform QTL mapping, and identified significant QTLs contributing to resistance to cyflumetofen (one QTL on LG1), cyenopyrafen (one QTL on LG3), and pyflubumide (two QTLs on LG1 and LG3). The QTL peaks on LG1 for cyflumetofen and pyflubumide overlapped and included the SdhB locus. For cyenopyrafen resistance, the QTLs on LG3 included the SdhC locus. For cyflumetofen resistance, we found an I260T mutation in SdhB. For pyflubumide and cyenopyrafen resistance, we detected I260V and S56L substitutions in SdhB and SdhC, respectively, by direct sequencing. Both I260 in SdhB and S56 in SdhC were present in highly conserved regions of the ubiquinone binding site formed at the interface among SdhB, SdhC, and SdhD. Mutations at these positions have been implicated in resistance against fungicides that act as Sdh inhibitors in various pathogens. Therefore, we consider these mutations to be target-site resistance mutations for these acaricidal SDH inhibitors.
Collapse
Affiliation(s)
- Naoya Sugimoto
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; Biology Group, Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd, Takarazuka 665-8555, Japan.
| | - Akihiro Takahashi
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Rei Ihara
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Itoh
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000, Ghent, Belgium
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Venturini FP, de Souza LM, Garbuio M, Inada NM, de Souza JP, Kurachi C, de Oliveira KT, Bagnato VS. Environmental safety and mode of action of a novel curcumin-based photolarvicide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29204-29217. [PMID: 32430723 DOI: 10.1007/s11356-020-09210-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Aedes aegypti is the vector of important diseases like dengue, zika, chikungunya, and yellow fever. Vector control is pivotal in combating the spread of these mosquito-borne illnesses. Photoactivable larvicide curcumin obtained from Curcuma longa Linnaeus has shown high potential for Ae. aegypti larvae control. However, the toxicity of this photosensitizer (PS) might jeopardize non-target aquatic organisms. The aim of this study was to evaluate the toxicity of this PS to Daphnia magna and Danio rerio, besides assessing its mode of action through larvae biochemical and histological studies. Three PS formulations were tested: PS in ethanol+DMSO, PS in sucrose, and PS in D-mannitol. The LC50 of PS in ethanol+DMSO to D. rerio was 5.9 mg L-1, while in D. magna the solvents were extremely toxic, and LC50 was not estimated. The PS formulations in sugars were not toxic to neither of the organisms. Reactive oxygen species (ROS) were generated in D. magna exposed to 50 mg L-1 of PS in D-mannitol, and D. rerio did not elicit this kind of response. D. magna feeding rates were not affected by the PS in D-mannitol. Concerning Ae. aegypti larvae, there were changes in reduced glutathione and protein levels, while catalase activity remained stable after exposure to PS in D-mannitol and sunlight. Histological changes were observed in larvae exposed to PS in sucrose and D-mannitol, most of them irreversible and deleterious. Our results show the feasibility of this photolarvicide use in Ae. aegypti larvae control and its safety to non-target organisms. These data are crucial to this original vector control approach implementation in public health policies.
Collapse
Affiliation(s)
- Francine Perri Venturini
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil.
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil.
| | - Larissa Marila de Souza
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
- PPG Biotec, Federal University of São Carlos, Sao Carlos, São Paulo, 13565-905, Brazil
| | - Matheus Garbuio
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
- PPG Biotec, Federal University of São Carlos, Sao Carlos, São Paulo, 13565-905, Brazil
| | - Natalia Mayumi Inada
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
| | - Jaqueline Pérola de Souza
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
| | - Cristina Kurachi
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
| | | | - Vanderlei Salvador Bagnato
- Optical Group, São Carlos Institute of Physics, University of São Paulo, Sao Carlos, São Paulo, 13560-970, Brazil
| |
Collapse
|
7
|
Contreras-Perera Y, Ponce-Garcia G, Villanueva-Segura K, Lopez-Monroy B, Rodríguez-Sanchez IP, Lenhart A, Manrique-Saide P, Flores AE. Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasit Vectors 2020; 13:224. [PMID: 32375862 PMCID: PMC7201803 DOI: 10.1186/s13071-020-04093-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background Insecticide resistance is a serious problem for vector control programmes worldwide. Resistance is commonly attributed to mutations at the insecticide’s target site or increased activity of detoxification enzymes. Methods We determined the knockdown concentration (KC50) and lethal concentration (LC50) of deltamethrin in six natural populations of adult Aedes aegypti from southeastern Mexico. These populations were then selected over five generations using the LC50 from the preceding generation that underwent selection, and the heritability of deltamethrin resistance was quantified. For each generation, we also determined the frequency of the kdr alleles L410, I1016 and C1534, and the levels of activity of three enzyme families (α- and β-esterases, mixed-function oxidases and glutathione S-transferases (GST)) associated with insecticide detoxification. Results There was an increase in KC50 and LC50 values in the subsequent generations of selection with deltamethrin (FS5vs FS0). According to the resistance ratios (RRs), we detected increases in LC50 ranging from 1.5 to 5.6 times the values of the parental generation and in KC50 ranging from 1.3–3.8 times the values of the parental generation. Triple homozygous mutant individuals (tri-locus, LL/II/CC) were present in the parental generations and increased in frequency after selection. The frequency of L410 increased from 1.18-fold to 2.63-fold after selection with deltamethrin (FS5vs FS0) in the populations analyzed; for I1016 an increase between 1.19-fold to 2.79-fold was observed, and C1534 was fixed in all populations after deltamethrin selection. Enzymatic activity varied significantly over the generations of selection. However, only α- esterase activity remained elevated in multiple populations after five generations of deltamethrin selection. We observed an increase in the mean activity levels of GSTs in two of the six populations analyzed. Conclusions The high levels of resistance and their association with high frequencies of kdr mutations (V410L, V1016I and F1534C) obtained through artificial selection, suggest an important role of these mutations in conferring resistance to deltamethrin. We highlight the need to implement strategies that involve the monitoring of kdr frequencies in insecticide resistance monitoring and management programmes.![]()
Collapse
Affiliation(s)
- Yamili Contreras-Perera
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Gustavo Ponce-Garcia
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Karina Villanueva-Segura
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Iram P Rodríguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Campus de Ciencias Biologicas y Agropecuarias, Merida, Yucatan, Mexico
| | - Adriana E Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico.
| |
Collapse
|
8
|
Smith LB, Sears C, Sun H, Mertz RW, Kasai S, Scott JG. CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:119-126. [PMID: 31519246 DOI: 10.1016/j.pestbp.2019.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent.
Collapse
Affiliation(s)
- Letícia B Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Colin Sears
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Haina Sun
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Robert W Mertz
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Shinji Kasai
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA; Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjukuku, Tokyo, Japan
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Zhao GH, Liu JN, Hu XH, Batool K, Jin L, Wu CX, Wu J, Chen H, Jiang XY, Yang ZH, Huang XH, Huang EJ, Yu XQ, Guan X, Zhang LL. Cloning, expression and activity of ATP-binding protein in Bacillus thuringiensis toxicity modulation against Aedes aegypti. Parasit Vectors 2019; 12:319. [PMID: 31238963 PMCID: PMC6593554 DOI: 10.1186/s13071-019-3560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/09/2019] [Indexed: 11/17/2022] Open
Abstract
Background Bacillus thuringiensis israelensis (Bti) is a widely used mosquitocidal microbial pesticide due to its high toxicity. ATP-binding proteins (ABP) are prevalently detected in insects and are related to reaction against Bti toxins. However, the function of ABP in mosquito biocontrol is little known, especially in Aedes aegypti. Therefore, this study aimed to clarify the function of ABP in Ae. aegypti against Bti toxin. Results Aedes aegypti ABP (GenBank: XM_001661856.2) was cloned, expressed and purified in this study. Far-western blotting and ELISA were also carried out to confirm the interaction between ABP and Cry11Aa. A bioassay of Cry11Aa was performed both in the presence and absence of ABP, which showed that the mortality of Ae. aegypti is increased with an increase in ABP. Conclusions Our results suggest that ABP in Ae. aegypti can modulate the toxicity of Cry11Aa toxin to mosquitoes by binding to Bti toxin. This could not only enrich the mechanism of Bt toxin, but also provide more data for the biocontrol of this transmission vector.
Collapse
Affiliation(s)
- Guo-Hui Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Nan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Hua Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen-Xu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Yan Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhao-Hui Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xian-Hui Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - En-Jiong Huang
- Fujian International Travel HealthCare Center, Fuzhou, 350001, China
| | - Xiao-Qiang Yu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Division of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ling-Ling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Bharati M, Saha D. Assessment of insecticide resistance in primary dengue vector, Aedes aegypti (Linn.) from Northern Districts of West Bengal, India. Acta Trop 2018; 187:78-86. [PMID: 30026024 DOI: 10.1016/j.actatropica.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
Abstract
Aedes mosquitoes are the major vectors transmitting several arboviral diseases such as dengue, zika and chikungunya worldwide. Northern districts of West Bengal is home to several epidemics vectored by mosquito including dengue infections, proper control of which depends on efficient vector control. However the onset of insecticide resistance has resulted in failure of vector control approaches. This study was carried out to unveil the level of insecticide resistance prevailing among the primary dengue vector in this dengue endemic region of India. It was observed that, field caught populations of Ae. aegypti were moderately to severely resistant to majority of the insecticide classes tested, i.e. Organochlorine (DDT), Organophosphates (temephos, malathion), Synthetic Pyrethroids (deltamethrin, lambdacyhalothrin and permethrin) and carbamate (propoxur). In majority of the populations, metabolic detoxification seemed to play the underlying role behind the development of insecticide resistance. This study seems to be the first report revealing the pattern of insecticide resistance in Ae. aegypti from Northern West Bengal. Efficient disease management in this region can only be achieved through proper insecticide resistance management. This study may help the concerned authorities in the formulation of an effective vector control strategy throughout this region incorporating the knowledge gained through this study.
Collapse
|
11
|
Bharati M, Saha D. Multiple insecticide resistance mechanisms in primary dengue vector, Aedes aegypti (Linn.) from dengue endemic districts of sub-Himalayan West Bengal, India. PLoS One 2018; 13:e0203207. [PMID: 30199543 PMCID: PMC6130861 DOI: 10.1371/journal.pone.0203207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background Mosquitoes belonging to genus Aedes are the prime vectors of several arboviral diseases such as Dengue, Zika and Chikungunya worldwide. Every year numerous cases of dengue infections occur throughout the world, proper control of which depends on efficient vector control. However the onset of insecticide resistance has resulted in failure of vector control approaches. Principal findings This study was carried out to unveil the degree of prevailing insecticide resistance along with its underlying mechanisms among the primary dengue vector in dengue endemic districts of West Bengal, India through standard WHO protocol. It was observed that, the majority of the tested populations were found to possess resistance to more than one insecticide. In adult bioassay, the toxicity levels of the six tested insecticides was found to decrease in the following order: deltamethrin > lambdacyhalothrin > malathion > propoxur > permethrin > DDT. In larval bioassay, one of the tested populations was found to possess moderate resistance against temephos, mortality percentage 92.5% and 79.8% for WHO (0.0200 ppm) and National Vector Borne disease Programme, India recommended dose (0.0125 ppm) respectively. Carboxylesterases were found to be involved in conferring resistance as revealed in synergistic and quantitative assay against temephos in North Dinajpur (NDP) population and malathion in Alipurduar (APD) and Darjeeling (DAR) populations. Similar correlations were also observed in the majority of the tested populations between reduced susceptibilities against pyrethroid insecticides and Cytochrome P450s activity. Conclusion Efficient disease management in this region can only be achieved through proper integrated vector management along with tools to minimize insecticide resistance. This study may help the concerned authorities in the formulation of an effective vector control strategy throughout this region incorporating the knowledge gained through this study.
Collapse
Affiliation(s)
- Minu Bharati
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Ramohunpur, P.O. North Bengal University, Siliguri, District – Darjeeling, West Bengal, India
| | - Dhiraj Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Ramohunpur, P.O. North Bengal University, Siliguri, District – Darjeeling, West Bengal, India
- * E-mail: ,
| |
Collapse
|
12
|
Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infect Dis Poverty 2017; 6:38. [PMID: 28187780 PMCID: PMC5303256 DOI: 10.1186/s40249-017-0254-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
Abstract
Background In the Guadeloupe and Saint Martin islands, Aedes aegypti mosquitoes are the only recognized vectors of dengue, chikungunya, and Zika viruses. For around 40 years, malathion was used as a mosquito adulticide and temephos as a larvicide. Since the European Union banned the use of these two insecticide molecules in the first decade of the 21st century, deltamethrin and Bacillus thuringiensis var. israelensis are the remaining adulticide and larvicide, respectively, used in Guadeloupe. In order to improve the management of vector control activities in Guadeloupe and Saint Martin, we investigated Ae. aegypti resistance to and mechanisms associated with deltamethrin, malathion, and temephos. Methods Ae. aegypti mosquitoes were collected from six different localities of Guadeloupe and Saint Martin. Larvae were used for malathion and temephos bioassays, and adult mosquitoes for deltamethrin bioassays, following World Health Organization recommendations. Knockdown resistance (Kdr) genotyping for V1016I and F1534C mutations, and expression levels of eight enzymes involved in detoxification mechanisms were examined in comparison with the susceptible reference Bora Bora strain. Results Resistance ratios (RR50) calculated for Ae. aegypti larvae showed high resistance levels to temephos (from 8.9 to 33.1-fold) and low resistance levels to malathion (from 1.7 to 4.4-fold). Adult females displayed moderate resistance levels to deltamethrin regarding the time necessary to affect 50% of individuals, varying from 8.0 to 28.1-fold. Molecular investigations on adult mosquitoes showed high resistant allele frequencies for V1016I and F1534C (from 85 to 96% and from 90 to 98%, respectively), as well as an overexpression of the glutathione S-transferase gene, GSTe2, the carboxylesterase CCEae3a, and the cytochrome genes 014614, CYP6BB2, CYP6M11, and CYP9J23. Conclusions Ae. aegypti populations from Guadeloupe and Saint Martin exhibit multiple resistance to organophosphates (temephos and malathion), and pyrethroids (deltamethrin). The mechanisms associated with these resistance patterns show strong frequencies of F1534C and V1016I Kdr mutations, and an over-expression of CCEae3a, GSTe2, and four cytochrome P450 genes (014614, CYP9J23, CYP6M11, CYP6BB2). These results will form the baseline for a deeper understanding of the insecticide resistance levels and associated mechanisms of Ae. aegypti populations and will be used to improve vector control strategies in Guadeloupe and Saint Martin. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0254-x) contains supplementary material, which is available to authorized users.
Collapse
|