1
|
Li M, Weng Z, Gong Z, Li X, Ye J, Gao Y, Rong L. cDNA Cloning, Bioinformatics, and Expression Analysis of ApsANS in Acer pseudosieboldianum. Int J Mol Sci 2025; 26:1865. [PMID: 40076492 PMCID: PMC11900018 DOI: 10.3390/ijms26051865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Anthocyanin synthetase (ANS), a key enzyme in the final step of the anthocyanin synthesis pathway, catalyzes the conversion of leucoanthocyanidins to anthocyanins. In this study, an ANS structural protein (TRINITY_DN18024_c0_g1) was found to be associated with anthocyanin accumulation in Acer pseudosieboldianum leaves, named ApsANS. Real-time quantitative fluorescence PCR analysis revealed that the expression of ApsANS was significantly higher in red-leaved (variant) than green-leaved (wild-type) strains, which was consistent with the transcriptome data. The UPLC results showed that the cyanidin metabolites may be the key substance influencing the final color formation of Acer pseudosieboldianum. The ApsANS gene was cloned and analyzed through bioinformatics analysis. ApsANS has a total length of 1371 bp, and it encodes 360 amino acids. Analysis of the structural domain of the ApsANS protein revealed that ApsANS contains a PcbC functional domain. Protein secondary structure predictions indicate that α-helix, irregularly coiled, and extended chains are the major building blocks. Subcellular localization predicted that ApsANS might be localized in the nucleus. The phylogenetic tree revealed that ApsANS is relatively closely related to ApANS in Acer palmatum. The prediction of miRNA showed that the ApsANS gene is regulated by miR6200. This study provides a theoretical reference for further analyzing the regulatory mechanism of leaf color formation in Acer pseudosieboldianum.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufu Gao
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Liping Rong
- College of Agriculture, Yanbian University, Yanji 133000, China
| |
Collapse
|
2
|
Ye Q, Liu F, Feng K, Fu T, Li W, Zhang C, Li M, Wang Z. Integrated Metabolomics and Transcriptome Analysis of Anthocyanin Biosynthetic Pathway in Prunus serrulata. PLANTS (BASEL, SWITZERLAND) 2025; 14:114. [PMID: 39795374 PMCID: PMC11723355 DOI: 10.3390/plants14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Prunus serrulata is an important landscape tree species whose flower color has high ornamental value. However, the molecular mechanisms regulating flower color in P. serrulata remain unclear. By studying the metabolomics and transcriptomics of three different color varieties under the species lineage of P. serrulata, 'Eigeng' (EG, white), 'Albo-rosea' (AR, pink), and 'Grandiflora' (GF, green), the biosynthetic mechanisms of different flower colors in P. serrulata were revealed. The results showed that the different colors of the petals were related to the content of chlorophyll and anthocyanins. Among these, cyanidin-3-O-glucoside and cyanidin-3-O-(6-O-malonyl-β-D-glucoside) were highly expressed in AR. A combined transcriptomic analysis revealed that five flavonoid structural genes, including two DFR genes and three UFGT genes, were specifically expressed. In addition, three key transcription factors, PsMYB77, PsMYB17, and PsMYB105, were identified as regulators of the structural genes DFR and UFGT and participants in the forward synthesis of anthocyanin. This study provides convincing evidence elucidating the regulatory mechanisms of anthocyanin synthesis of P. serrulata and provides a theoretical basis for the breeding and development of new varieties and germplasm resource innovation for cherry blossom.
Collapse
Affiliation(s)
- Qi Ye
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Feng Liu
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Kai Feng
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Tao Fu
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Wen Li
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| | - Cheng Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Meng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhilong Wang
- Department of Horticultural Technology, Ningbo City College of Vocational Technology, Ningbo 315000, China; (Q.Y.); (F.L.); (K.F.); (T.F.); (W.L.)
| |
Collapse
|
3
|
Marin-Recinos MF, Pucker B. Genetic factors explaining anthocyanin pigmentation differences. BMC PLANT BIOLOGY 2024; 24:627. [PMID: 38961369 PMCID: PMC11221117 DOI: 10.1186/s12870-024-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.
Collapse
Affiliation(s)
- Maria F Marin-Recinos
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Wang A, Ma H, Zhang X, Zhang B, Li F. Transcriptomic analysis reveals the mechanism underlying the anthocyanin changes in Fragaria nilgerrensis Schlecht. and its interspecific hybrids. BMC PLANT BIOLOGY 2023; 23:356. [PMID: 37434140 DOI: 10.1186/s12870-023-04361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Fragaria nilgerrensis (FN) provides a rich source of genetic variations for strawberry germplasm innovation. The color of strawberry fruits is a key factor affecting consumer preferences. However, the genetic basis of the fruit color formation in F. nilgerrensis and its interspecific hybrids has rarely been researched. RESULTS In this study, the fruit transcriptomes and flavonoid contents of FN (white skin; control) and its interspecific hybrids BF1 and BF2 (pale red skin) were compared. A total of 31 flavonoids were identified. Notably, two pelargonidin derivatives (pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside) were revealed as potential key pigments for the coloration of BF1 and BF2 fruits. Additionally, dihydroflavonol 4-reductase (DFR) (LOC101293459 and LOC101293749) and anthocyanidin 3-O-glucosyltransferase (BZ1) (LOC101300000), which are crucial structural genes in the anthocyanidin biosynthetic pathway, had significantly up-regulated expression levels in the two FN interspecific hybrids. Moreover, most of the genes encoding transcription factors (e.g., MYB, WRKY, TCP, bHLH, AP2, and WD40) related to anthocyanin accumulation were differentially expressed. We also identified two DFR genes (LOC101293749 and LOC101293459) that were significantly correlated with members in bHLH, MYB, WD40, AP2, and bZIP families. Two chalcone synthase (CHS) (LOC101298162 and LOC101298456) and a BZ1 gene (LOC101300000) were highly correlated with members in bHLH, WD40 and AP2 families. CONCLUSIONS Pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside may be the key pigments contributing to the formation of pale red fruit skin. DFR and BZ1 structural genes and some bHLH, MYB, WD40, AP2, and bZIP TF family members enhance the accumulation of two pelargonidin derivatives. This study provides important insights into the regulation of anthocyanidin biosynthesis in FN and its interspecific hybrids. The presented data may be relevant for improving strawberry fruit coloration via genetic engineering.
Collapse
Affiliation(s)
- Aihua Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, 234000, Anhui, China
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Hongye Ma
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, 234000, Anhui, China
| | - Baohui Zhang
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Fei Li
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
5
|
Makarenko ES, Shesterikova EM, Kazakova EA, Bitarishvili SV, Volkova PY, Blinova YA, Lychenkova MA. White clover from the exclusion zone of the Chernobyl NPP: Morphological, biochemical, and genetic characteristics. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 262:107152. [PMID: 36933462 DOI: 10.1016/j.jenvrad.2023.107152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
A comprehensive study of the biological effects of chronic radiation exposure (8 μGy/h) in populations of white clover (Trifolium repens L.) from the Chernobyl exclusion zone was carried out. White clover is one of the most important pasture legumes, having many agricultural applications. Studies at two reference and three radioactively contaminated plots showed no stable morphological effects in white clover at this level of radiation exposure. Increased activities of catalase and peroxidases were found in some impacted plots. Auxin concentration was enhanced in the radioactively contaminated plots. Genes involved in the maintenance of water homeostasis and photosynthetic processes (TIP1 and CAB1) were upregulated at radioactively contaminated plots.
Collapse
Affiliation(s)
- Ekaterina S Makarenko
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia.
| | - Ekaterina M Shesterikova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| | - Elizaveta A Kazakova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| | - Sofia V Bitarishvili
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| | | | - Yana A Blinova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| | - Maria A Lychenkova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| |
Collapse
|
6
|
Wang Y, Li S, Zhu Z, Xu Z, Qi S, Xing S, Yu Y, Wu Q. Transcriptome and chemical analyses revealed the mechanism of flower color formation in Rosa rugosa. FRONTIERS IN PLANT SCIENCE 2022; 13:1021521. [PMID: 36212326 PMCID: PMC9539313 DOI: 10.3389/fpls.2022.1021521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Rosa rugosa is a famous Chinese traditional flower with high ornamental value and well environmental adapt ability. The cultivation of new colorful germplasms to improve monotonous flower color could promote its landscape application. However, the mechanism of flower color formation in R. rugosa remains unclear. In this study, combined analyses of the chemical and transcriptome were performed in the R. rugosa germplasms with representative flower colors. Among the identified anthocyanins, cyanidin 3,5-O-diglucoside (Cy3G5G) and peonidin 3,5-O-diglucoside (Pn3G5G) were the two dominant anthocyanins in the petals of R. rugosa. The sum content of Cy3G5G and Pn3G5G was responsible for the petal color intensity, such as pink or purple, light- or dark- red. The ratio of Cy3G5G to Pn3G5G was contributed to the petal color hue, that is, red or pink/purple. Maintaining both high relative and high absolute content of Cy3G5G may be the precondition for forming red-colored petals in R. rugosa. Cyanidin biosynthesis shunt was the dominant pathway for anthocyanin accumulation in R. rugosa, which may be the key reason for the presence of monotonous petal color in R. rugosa, mainly pink/purple. In the upstream pathway of cyanidin biosynthesis, 35 differentially expressed structural genes encoding 12 enzymes co-expressed to regulate the sum contents of Cy3G5G and Pn3G5G, and then determined the color intensity of petals. RrAOMT, involved in the downstream pathway of cyanidin biosynthesis, regulated the ratio of Cy3G5G to Pn3G5G via methylation and then determined the color hue of petals. It was worth mentioning that significantly higher delphinidin-3,5-O-diglucoside content and RrF3'5'H expression were detected from deep purple-red-flowered 8-16 germplasm with somewhat unique and visible blue hue. Three candidate key transcription factors identified by correlation analysis, RrMYB108, RrC1, and RrMYB114, might play critical roles in the control of petal color by regulating the expression of both RrAOMT and other multiple structural genes. These results provided novel insights into anthocyanin accumulation and flower coloration mechanism in R. rugosa, and the candidate key genes involved in anthocyanin biosynthesis could be valuable resources for the breeding of ornamental plants in future.
Collapse
Affiliation(s)
- Yiting Wang
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shaopeng Li
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ziqi Zhu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Zongda Xu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shuai Qi
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Shutang Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Yunyan Yu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| | - Qikui Wu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong agricultural University, Tai’an, China
| |
Collapse
|
7
|
Jha UC, Nayyar H, Parida SK, Bakır M, von Wettberg EJB, Siddique KHM. Progress of Genomics-Driven Approaches for Sustaining Underutilized Legume Crops in the Post-Genomic Era. Front Genet 2022; 13:831656. [PMID: 35464848 PMCID: PMC9021634 DOI: 10.3389/fgene.2022.831656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Legume crops, belonging to the Fabaceae family, are of immense importance for sustaining global food security. Many legumes are profitable crops for smallholder farmers due to their unique ability to fix atmospheric nitrogen and their intrinsic ability to thrive on marginal land with minimum inputs and low cultivation costs. Recent progress in genomics shows promise for future genetic gains in major grain legumes. Still it remains limited in minor legumes/underutilized legumes, including adzuki bean, cluster bean, horse gram, lathyrus, red clover, urd bean, and winged bean. In the last decade, unprecedented progress in completing genome assemblies of various legume crops and resequencing efforts of large germplasm collections has helped to identify the underlying gene(s) for various traits of breeding importance for enhancing genetic gain and contributing to developing climate-resilient cultivars. This review discusses the progress of genomic resource development, including genome-wide molecular markers, key breakthroughs in genome sequencing, genetic linkage maps, and trait mapping for facilitating yield improvement in underutilized legumes. We focus on 1) the progress in genomic-assisted breeding, 2) the role of whole-genome resequencing, pangenomes for underpinning the novel genomic variants underlying trait gene(s), 3) how adaptive traits of wild underutilized legumes could be harnessed to develop climate-resilient cultivars, 4) the progress and status of functional genomics resources, deciphering the underlying trait candidate genes with putative function in underutilized legumes 5) and prospects of novel breeding technologies, such as speed breeding, genomic selection, and genome editing. We conclude the review by discussing the scope for genomic resources developed in underutilized legumes to enhance their production and play a critical role in achieving the "zero hunger" sustainable development goal by 2030 set by the United Nations.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Melike Bakır
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Eric J. B. von Wettberg
- Plant and Soil Science and Gund Institute for the Environment, The University of Vermont, Burlington, VT, United States
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | | |
Collapse
|
8
|
Li J, Ma Y, Hu M, Zhao Y, Liu B, Wang C, Zhang M, Zhang L, Yang X, Mu G. Multi-Omics and miRNA Interaction Joint Analysis Highlight New Insights Into Anthocyanin Biosynthesis in Peanuts ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:818345. [PMID: 35251087 PMCID: PMC8888885 DOI: 10.3389/fpls.2022.818345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 06/01/2023]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important economic and oil crops in the world. At present, peanut varieties with rich anthocyanin in testa are rare in the market, but the selection and breeding of varieties with the related traits has always attracted the attention of breeders. In this study, two peanut varieties with the pink and purple testa, G110 (G) and Z18-40 (Z) were used to conduct interaction joint analysis of multi-omics and miRNA-target gene. The anthocyanin content of Z18-40 was 7.49-8.62-folds higher than G110 on 30 DAF (days after flowering) and 45 DAF via Ultraviolet-visible Spectrophotometer (UV-5800, Shanghai, China). And then, a total of 14 candidate genes related with the anthocyanin biosynthesis were identified for correlation in different comparison groups (R 2 ≥ 0.80), among of a novel gene Ah21440 related with hydroxycinnamoyl transferase (HCT) biosynthesis was identified. In addition, Cyanidin 3-O-glucoside (Kuromanin, pmb0550) was the only common differentially accumulated metabolite (DAM) identified using multi-omics joint analysis in G1_vs_G2, Z1_vs_Z2, G1_vs_Z1, and G2_vs_Z2, respectively. Correlation analysis of miRNA-target genes and DEGs in the transcriptome shows that, AhmiR2950, AhmiR398, AhmiR50, and AhmiR51 regulated to HCT and chalcone biosynthesis related candidate genes (Ah21440, AhCHS, AhCHI). Lastly, all of 14 candidate genes and 4 differentially expressed miRNAs were validated using quantitative real-time PCR (qRT-PCR), which trends were consistent with that of the former transcriptome data. The results provide important reference for in-depth research on the anthocyanin metabolism mechanism in peanut testa.
Collapse
|
9
|
Osorio-Guarín JA, Gopaulchan D, Quanckenbush C, Lennon AM, Umaharan P, Cornejo OE. Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.). PLoS One 2021; 16:e0261364. [PMID: 34890418 PMCID: PMC8664202 DOI: 10.1371/journal.pone.0261364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently insufficient information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study, 18 cDNA libraries related to the spathe color and developmental stages of A. andraeanum were characterized by transcriptome sequencing (RNA-seq). For the de novo transcriptome, a total of 114,334,082 primary sequence reads were obtained from the Illumina sequencer and were assembled into 151,652 unigenes. Approximately 58,476 transcripts were generated and used for comparative transcriptome analysis between three cultivars that differ in spathe color (‘Sasha’ (white), ‘Honduras’ (red), and ‘Rapido’ (purple)). A large number of differentially expressed genes (8,324), potentially involved in multiple biological and metabolic pathways, were identified, including genes in the flavonoid and anthocyanin biosynthetic pathways. Our results showed that the chalcone isomerase (CHI) gene presented the strongest evidence for an association with differences in color and the highest correlation with other key genes (flavanone 3-hydroxylase (F3H), flavonoid 3’5’ hydroxylase (F3’5’H)/ flavonoid 3’-hydroxylase (F3’H), and leucoanthocyanidin dioxygenase (LDOX)) in the anthocyanin pathway. We also identified a differentially expressed cytochrome P450 gene in the late developmental stage of the purple spathe that appeared to determine the difference between the red- and purple-colored spathes. Furthermore, transcription factors related to putative MYB-domain protein that may control anthocyanin pathway were identified through a weighted gene co-expression network analysis (WGCNA). The results provided basic sequence information for future research on spathe color, which have important implications for this ornamental breeding strategies.
Collapse
Affiliation(s)
- Jaime A. Osorio-Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria–Agrosavia, Mosquera, Cundinamarca, Colombia
| | - David Gopaulchan
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Corey Quanckenbush
- Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Adrian M. Lennon
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Pathmanathan Umaharan
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Exploring the genes involved in biosynthesis of dihydroquercetin and dihydromyricetin in Ampelopsis grossedentata. Sci Rep 2021; 11:15596. [PMID: 34341423 PMCID: PMC8329223 DOI: 10.1038/s41598-021-95071-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Dihydroquercetin (DHQ), an extremely low content compound (less than 3%) in plants, is an important component of dietary supplements and used as functional food for its antioxidant activity. Moreover, as downstream metabolites of DHQ, an extremely high content of dihydromyricetin (DHM) is up to 38.5% in Ampelopsis grossedentata. However, the mechanisms involved in the biosynthesis and regulation from DHQ to DHM in A. grossedentata remain unclear. In this study, a comparative transcriptome analysis of A. grossedentata containing extreme amounts of DHM was performed on the Illumina HiSeq 2000 sequencing platform. A total of 167,415,597 high-quality clean reads were obtained and assembled into 100,584 unigenes having an N50 value of 1489. Among these contigs, 57,016 (56.68%) were successfully annotated in seven public protein databases. From the differentially expressed gene (DEG) analysis, 926 DEGs were identified between the B group (low DHM: 210.31 mg/g) and D group (high DHM: 359.12 mg/g) libraries, including 446 up-regulated genes and 480 down-regulated genes (B vs. D). Flavonoids (DHQ, DHM)-related DEGs of ten structural enzyme genes, three myeloblastosis transcription factors (MYB TFs), one basic helix-loop-helix (bHLH) TF, and one WD40 domain-containing protein were obtained. The enzyme genes comprised three PALs, two CLs, two CHSs, one F3'H, one F3'5'H (directly converts DHQ to DHM), and one ANS. The expression profiles of randomly selected genes were consistent with the RNA-seq results. Our findings thus provide comprehensive gene expression resources for revealing the molecular mechanism from DHQ to DHM in A. grossedentata. Importantly, this work will spur further genetic studies about A. grossedentata and may eventually lead to genetic improvements of the DHQ content in this plant.
Collapse
|
11
|
Gao YF, Zhao DH, Zhang JQ, Chen JS, Li JL, Weng Z, Rong LP. De novo transcriptome sequencing and anthocyanin metabolite analysis reveals leaf color of Acer pseudosieboldianum in autumn. BMC Genomics 2021; 22:383. [PMID: 34034673 PMCID: PMC8145822 DOI: 10.1186/s12864-021-07715-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. Results Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3, 5-O-diglucoside were abundant, especially Cyanidin 3, 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. Conclusions Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07715-x.
Collapse
Affiliation(s)
- Yu-Fu Gao
- Agriculture College, Yanbian University, 977 Gongyuan Road, 133002, Yanji, China
| | - Dong-Hui Zhao
- Agriculture College, Yanbian University, 977 Gongyuan Road, 133002, Yanji, China
| | - Jia-Qi Zhang
- Agriculture College, Yanbian University, 977 Gongyuan Road, 133002, Yanji, China
| | - Jia-Shuo Chen
- Agriculture College, Yanbian University, 977 Gongyuan Road, 133002, Yanji, China
| | - Jia-Lin Li
- Agriculture College, Yanbian University, 977 Gongyuan Road, 133002, Yanji, China
| | - Zhuo Weng
- Agriculture College, Yanbian University, 977 Gongyuan Road, 133002, Yanji, China
| | - Li-Ping Rong
- Agriculture College, Yanbian University, 977 Gongyuan Road, 133002, Yanji, China.
| |
Collapse
|
12
|
Qiao Y, Cheng Q, Zhang Y, Yan W, Yi F, Shi F. Transcriptomic and chemical analyses to identify candidate genes involved in color variation of sainfoin flowers. BMC PLANT BIOLOGY 2021; 21:61. [PMID: 33482728 PMCID: PMC7825240 DOI: 10.1186/s12870-021-02827-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Sainfoin (Onobrychis viciifolia Scop) is not only a high-quality legume forage, but also a nectar-producing plant. Therefore, the flower color of sainfoin is an important agronomic trait, but the factors affecting its flower phenotype are still unclear. To gain insights into the regulatory networks associated with metabolic pathways of coloration compounds (flavonoids or anthocyanins) and identify the key genes, we conducted a comprehensive analysis of the phenotype, metabolome and transcriptome of WF and AF of sainfoin. RESULTS Delphinidin, petunidin and malvidin derivatives were the main anthocyanin compounds in the AF of sainfoin. These substances were not detected in the WF of sainfoin. The transcriptomes of WF and AF in sainfoin at the S1 and S3 stages were obtained using the Illumina HiSeq4000 platform. Overall, 10,166 (4273 upregulated and 5893 downregulated) and 15,334 (8174 upregulated and 7160 downregulated) DEGs were identified in flowers at S1 and S3 stages, respectively (WF-VS-AF). KEGG pathway annotations showed that 6396 unigenes were annotated to 120 pathways and contained 866 DEGs at S1 stages, and 6396 unigenes were annotated to 131 pathways and included 1546 DEGs at the S3 stage. Nine DEGs belonging to the "flavonoid biosynthesis"and "phenylpropanoid biosynthesis" pathways involved in flower color formation were identified and verified by RT-qPCR analyses. Among these DEGs, 4CL3, FLS, ANS, CHS, DFR and CHI2 exhibited downregulated expression, and F3H exhibited upregulated expression in the WF compared to the AF, resulting in a decrease in anthocyanin synthesis and the formation of WF in sainfoin. CONCLUSIONS This study is the first to use transcriptome technology to study the mechanism of white flower formation in sainfoin. Our transcriptome data will be a great enrichment of the genetic information for sainfoin. In addition, the data presented herein will provide valuable molecular information for genetic breeding and provide insight into the future study of flower color polymorphisms in sainfoin.
Collapse
Affiliation(s)
- Yu Qiao
- College of Grassland Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Qiming Cheng
- College of Grassland Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Yutong Zhang
- College of Grassland Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Wei Yan
- College of Grassland Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Fengyan Yi
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Fengling Shi
- College of Grassland Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Key Laboratory of Grassland Resources of the Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
13
|
Liu C, Lin H, Li B, Dong Y, Yin T. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110958. [PMID: 32800230 DOI: 10.1016/j.ecoenv.2020.110958] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation is an effective way to repair heavy metal contaminated soil and rhizosphere microorganisms play an important role in plant regulation. Nevertheless, little information is known about the variation of microbial metabolic activities and community structure in rhizosphere during phytoremediation. In this study, the rhizosphere soil microbial metabolic activities and community structure of Trifolium repensL. during Cd-contaminated soil phytoremediation, were analyzed by Biolog EcoPlate™ and high-throughput sequencing. The uptake in the roots of Trifolium repensL. grown in 5.68 and 24.23 mg/kg Cd contaminated soil was 33.51 and 84.69 mg/kg respectively, causing the acid-soluble Cd fractions decreased 7.3% and 5.4%. Phytoremediation significantly influenced microbial community and Trifolium repensL. planting significantly increased the rhizosphere microbial population, diversity, the relative abundance of plant growth promoting bacteria (Kaistobacter and Flavisolibacter), and the utilization of difficultly metabolized compounds. The correlation analysis among substrate utilization and microbial communities revealed that the relative abundance increased microorganisms possessed stronger carbon utilization capacity, which was beneficial to regulate the stability of plant-microbial system. Collectively, the results of this study provide fundamental insights into the microbial metabolic activities and community structure during heavy metal contaminated soil phytoremediation, which may aid in the bioregulation of phytoremediation.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
14
|
Ahmad S, Zeb A. Phytochemical profile and pharmacological properties of Trifolium repens. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2020-0015/jbcpp-2020-0015.xml. [PMID: 32776902 DOI: 10.1515/jbcpp-2020-0015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 11/15/2022]
Abstract
Trifolium repens belongs to the family Leguminosae and has been used for therapeutic purposes as traditional medicine. The plant is widely used as fodder and leafy vegetables for human uses. However, there is a lack of a detailed review of its phytochemical profile and pharmacological properties. This review presents a comprehensive overview of the phytochemical profile and biological properties of T. repens. The plant is used as antioxidants and cholinesterase inhibitors and for anti-inflammatory, antiseptic, analgesic, antirheumatic ache, and antimicrobial purposes. This review has summarized the available updated useful information about the different bioactive compounds such as simple phenols, phenolic acids, flavones, flavonols, isoflavones, pterocarpans, cyanogenic glucosides, saponins, and condensed tannins present in T. repens. The pharmacological roles of these secondary metabolites present in T. repens have been presented. It has been revealed that T. repens contain important phytochemicals, which is the potential source of health-beneficial bioactive components for food and nutraceuticals industries.
Collapse
Affiliation(s)
- Sultan Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
15
|
Khan MA, Khan AL, Imran QM, Asaf S, Lee SU, Yun BW, Hamayun M, Kim TH, Lee IJ. Exogenous application of nitric oxide donors regulates short-term flooding stress in soybean. PeerJ 2019; 7:e7741. [PMID: 31608169 PMCID: PMC6788439 DOI: 10.7717/peerj.7741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022] Open
Abstract
Short-term water submergence to soybean (Glycine max L.) create hypoxic conditions hindering plant growth and productivity. Nitric oxide (NO) is considered a stress-signalling and stress-evading molecule, however, little is known about its role during flooding stress. We elucidated the role of sodium nitroprusside (SNP) and S-nitroso L-cysteine (CySNO) as NO donor in modulation of flooding stress-related bio-chemicals and genetic determinants of associated nitrosative stress to Daewon and Pungsannamul soybean cultivars after 3 h and 6 h of flooding stress. The results showed that exogenous SNP and CysNO induced glutathione activity and reduced the resulting superoxide anion contents during short-term flooding in Pungsannamul soybean. The exo- SNP and CysNO triggered the endogenous S-nitrosothiols, and resulted in elevated abscisic acid (ABA) contents in both soybean cultivars overtime. To know the role of ABA and NO related genes in short-term flooding stress, the mRNA expression of S-nitrosoglutathione reductase (GSNOR1), NO overproducer1 (NOX1) and nitrate reductase (NR), Timing of CAB expression1 (TOC1), and ABA-receptor (ABAR) were assessed. The transcripts accumulation of GSNOR1, NOX1, and NR being responsible for NO homeostasis, were significantly high in response to early or later phases of flooding stress. ABAR and TOC1 showed a decrease in transcript accumulation in both soybean plants treated with exogenous SNP and CySNO. The exo- SNP and CySNO could impinge a variety of biochemical and transcriptional programs that can mitigate the negative effects of short-term flooding stress in soybean.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center University of Nizwa, Nizwa, Oman
| | - Qari Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center University of Nizwa, Nizwa, Oman
| | - Sang-Uk Lee
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Tae-Han Kim
- School of Agricultural Civil & Bio-industrial Machinery Engineering, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| |
Collapse
|
16
|
Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop ( Humulus lupulus L.). Viruses 2018; 10:v10100570. [PMID: 30340328 PMCID: PMC6212812 DOI: 10.3390/v10100570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Viroids are smallest known pathogen that consist of non-capsidated, single-stranded non-coding RNA replicons and they exploits host factors for their replication and propagation. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) is a serious threat, which spreads rapidly within hop gardens. In this study, we employed comprehensive transcriptome analyses to dissect host-viroid interactions and identify gene expression changes that are associated with disease development in hop. Our analysis revealed that CBCVd-infection resulted in the massive modulation of activity of over 2000 genes. Expression of genes associated with plant immune responses (protein kinase and mitogen-activated protein kinase), hypersensitive responses, phytohormone signaling pathways, photosynthesis, pigment metabolism, protein metabolism, sugar metabolism, and modification, and others were altered, which could be attributed to systemic symptom development upon CBCVd-infection in hop. In addition, genes encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those related to basal defense responses were up-regulated. The expression levels of several genes identified from RNA sequencing analysis were confirmed by qRT-PCR. Our systematic comprehensive CBCVd-responsive transcriptome analysis provides a better understanding and insights into complex viroid-hop plant interaction. This information will assist further in the development of future measures for the prevention of CBCVd spread in hop fields.
Collapse
|