1
|
Sharma A, Gupta S, Paul K. Evolution of codon and amino acid usage in bacterial protein toxins. Biochem Biophys Res Commun 2023; 651:47-55. [PMID: 36791498 DOI: 10.1016/j.bbrc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Toxin proteins are secreted by most pathogens as an integral part of pathogenic mechanism(s). The toxins act by either damaging the host cell membrane (for example, pore-forming toxins and RTX toxins) or by modulation of important cellular pathways (for example, inhibition of protein translation by ribosome-inactivating proteins). The mechanism of action of these toxins provides the pathogen with strategies for adaptation in the unfavorable host environment. Though, secreted by different pathogenic species, the protein toxins seem to share common features that allow the protein to bind to specific molecules and enter the host cell. Earlier studies have suggested role of several events like horizontal gene transfer and insertion-deletion mutations in evolution of protein toxins. The present study involving 125 bacterial protein toxins secreted by 49 pathogenic bacteria focuses on the role and constraints of the bacterial genome on evolution of codon and amino acid usage in respective bacterial protein toxins. We compare the nucleotide composition, codon and dinucleotide usage trends between different classes of bacterial protein toxins and between individual toxins and the parent bacterial genome expressing the toxin(s).
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, 144012, India
| | - Shelly Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, 144012, India.
| |
Collapse
|
2
|
Suresh KP, Indrabalan UB, Shreevatsa B, Dharmashekar C, Singh P, Patil SS, Syed A, Elgorban AM, Eswaramoorthy R, Amachawadi RG, Shivamallu C, Kollur SP. Evaluation of codon usage patterns and molecular evolution dynamics in Japanese encephalitis virus: An integrated bioinformatics approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105410. [PMID: 36791944 DOI: 10.1016/j.meegid.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
In the recent survey, Japanese encephalitis (JE) is one of the most common mosquito-borne diseases, accounting for ∼30% of fatalities. The outbreaks of the JE virus (JEV) suggests that exhaustive study is essential for the prevention and management of the disease. The disease mainly spreads in humans and pigs by the vector: mosquito; as this is a major concern, this study had employed various bioinformatics tools to investigate the codon usage bias, evolutionary inference and selection pressure analysis of the Japanese encephalitis virus disease. The results indicated that the JE virus was biased and natural selection was the main factor shaping the codon usage that was determined and confirmed with the Nc, neutrality, PR2 plots and correlation analysis. The evolutionary analysis revealed that the virus had a substitution rate of 1.54 × 10-4 substitution/site/year and the tMRCA was found to be in 1723. The transmission of the virus in the map found transmissions mostly from China and transmitted across Asia and Africa. The selection pressure analysis employed three methods which had 969th codon site as diversifying site and had many purifying sites that shows the virus had evolved rapidly. The inferences from this study would aid people to employ this methodology on various diseases and also perform insilico studies in the field of vaccinology and immunoinformatics.
Collapse
Affiliation(s)
| | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560063, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Pranav Singh
- Department of Internal Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560063, India.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamilnadu, India.
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA.
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidhyapeetham, Mysuru Campus, Mysuru 570 026, Karnataka, India.
| |
Collapse
|
3
|
Li Y, Khandia R, Papadakis M, Alexiou A, Simonov AN, Khan AA. An investigation of codon usage pattern analysis in pancreatitis associated genes. BMC Genom Data 2022; 23:81. [PMID: 36434531 PMCID: PMC9700901 DOI: 10.1186/s12863-022-01089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pancreatitis is an inflammatory disorder resulting from the autoactivation of trypsinogen in the pancreas. The genetic basis of the disease is an old phenomenon, and evidence is accumulating for the involvement of synonymous/non-synonymous codon variants in disease initiation and progression. RESULTS The present study envisaged a panel of 26 genes involved in pancreatitis for their codon choices, compositional analysis, relative dinucleotide frequency, nucleotide disproportion, protein physical properties, gene expression, codon bias, and interrelated of all these factors. In this set of genes, gene length was positively correlated with nucleotide skews and codon usage bias. Codon usage of any gene is dependent upon its AT and GC component; however, AGG, CGT, and CGA encoding for Arg, TCG for Ser, GTC for Val, and CCA for Pro were independent of nucleotide compositions. In addition, Codon GTC showed a correlation with protein properties, isoelectric point, instability index, and frequency of basic amino acids. We also investigated the effect of various evolutionary forces in shaping the codon usage choices of genes. CONCLUSIONS This study will enable us to gain insight into the molecular signatures associated with the disease that might help identify more potential genes contributing to enhanced risk for pancreatitis. All the genes associated with pancreatitis are generally associated with physiological function, and mutations causing loss of function, over or under expression leads to an ailment. Therefore, the present study attempts to envisage the molecular signature in a group of genes that lead to pancreatitis in case of malfunction.
Collapse
Affiliation(s)
- Yuanyang Li
- Third-Grade Pharmacological Laboratory On Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China ,grid.254148.e0000 0001 0033 6389College of Medical Science, China Three Gorges University, Yichang, China
| | - Rekha Khandia
- grid.411530.20000 0001 0694 3745Department of Biochemistry and Genetics, Barkatullah University, Bhopal, MP 462026 India
| | - Marios Papadakis
- grid.412581.b0000 0000 9024 6397Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia ,AFNP Med Austria, Vienna, Austria
| | | | - Azmat Ali Khan
- grid.56302.320000 0004 1773 5396Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
4
|
An extensive evaluation of codon usage pattern and bias of structural proteins p30, p54 and, p72 of the African swine fever virus (ASFV). Virusdisease 2021; 32:810-822. [PMID: 34901328 DOI: 10.1007/s13337-021-00719-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
African swine fever virus (ASFV) belongs to the family of Asfarviridae to the genus Asfivirus. ASF virus causes hemorrhage illness with a high mortality rate and hence, commercial loss in the swine community. The ASFV has been categorized by variation in codon usage that is caused by high mutation rates and natural selection. The evolution is caused mainly due to the mutation pressure and regulating the protein gene expression. Based on publicly accessible nucleotide sequences of the ASFV and its host (pig & tick), codon usage bias analysis was performed since an approved effective vaccination is not available to date, it is very important to analyze the codon usage bias of the p30, p54, and p72 proteins of ASFV to produce an effective and efficient vaccine to control the disease. Even though the codon usage bias analyses have been evaluated earlier, the evaluation of the codon usage pattern specific to p30, p54, and p72 of ASFV is inadequate. In all the protein-coding sequences, nucleotide base and codons terminating with base T were most frequent and the mean effective number of codons (Nc) was high, indicating the presence of codon usage bias. The GC contents and dinucleotide frequencies also indicated the codon usage bias of the ASFV pig and tick. The Nc plot, parity plot, neutrality plot analysis, revealed natural selection, as well as mutation pressure, were the major constraints in altering the codon bias of ASF virus. codon usage bias analysis was performed with no substantial differences in codon usage of the ASFV in pig and tick. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00719-x.
Collapse
|
5
|
Li Y, Wang R, Wang H, Pu F, Feng X, Jin L, Ma Z, Ma XX. Codon Usage Bias in Autophagy-Related Gene 13 in Eukaryotes: Uncovering the Genetic Divergence by the Interplay Between Nucleotides and Codon Usages. Front Cell Infect Microbiol 2021; 11:771010. [PMID: 34804999 PMCID: PMC8602353 DOI: 10.3389/fcimb.2021.771010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Synonymous codon usage bias is a universal characteristic of genomes across various organisms. Autophagy-related gene 13 (atg13) is one essential gene for autophagy initiation, yet the evolutionary trends of the atg13 gene at the usages of nucleotide and synonymous codon remains unexplored. According to phylogenetic analyses for the atg13 gene of 226 eukaryotic organisms at the nucleotide and amino acid levels, it is clear that their nucleotide usages exhibit more genetic information than their amino acid usages. Specifically, the overall nucleotide usage bias quantified by information entropy reflected that the usage biases at the first and second codon positions were stronger than those at the third position of the atg13 genes. Furthermore, the bias level of nucleotide ‘G’ usage is highest, while that of nucleotide ‘C’ usage is lowest in the atg13 genes. On top of that, genetic features represented by synonymous codon usage exhibits a species-specific pattern on the evolution of the atg13 genes to some extent. Interestingly, the codon usages of atg13 genes in the ancestor animals (Latimeria chalumnae, Petromyzon marinus, and Rhinatrema bivittatum) are strongly influenced by mutation pressure from nucleotide composition constraint. However, the distributions of nucleotide composition at different codon positions in the atg13 gene display that natural selection still dominates atg13 codon usages during organisms’ evolution.
Collapse
Affiliation(s)
- Yicong Li
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Huihui Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
6
|
Das D, Deb B, Malakar AK, Chakraborty S. Allele frequency analysis of GALC gene causing Krabbe disease in human and its codon usage. Gene 2020; 747:144673. [PMID: 32304783 DOI: 10.1016/j.gene.2020.144673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Krabbe disease is one of the rarest autosomal recessive disorders in human, caused by mutation in the GALC (β-galactosylceramidase) gene, resulting in several mental and physical health issues. Due to its rarity and phenotypic heterogeneity, diagnosis rate of this disease is very low. This study generated information on the recessive allele frequency dynamics of GALC gene across 15 global populations, with the highest frequency detected in Druze (Israel) population and the lowest frequency in Turkey and the United States. The recessive allele would take more time period (about 24,975 years) to be completely removed from the population having the lowest frequency and vice versa. The codon usage patterns of four isoforms of GALC gene revealed that a few synonymous codons were used more frequently than others in the isoforms. The codon AGA (arginine) was found to be overrepresented in GALC gene, except for galactocerebrosidase isoform a precursor. Further, GALC gene showed low codon usage bias (CUB) as evident from high ENC values (55.7-58.2), with A/T ending codons more preferred to G/C ending codons. CUB analysis elucidated the dual role of mutational pressure (major role) and natural selection (minor role) in GALC gene evolution.
Collapse
Affiliation(s)
- Debaroti Das
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Bornali Deb
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Arup Kumar Malakar
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
7
|
Saha J, Saha BK, Pal Sarkar M, Roy V, Mandal P, Pal A. Comparative Genomic Analysis of Soil Dwelling Bacteria Utilizing a Combinational Codon Usage and Molecular Phylogenetic Approach Accentuating on Key Housekeeping Genes. Front Microbiol 2019; 10:2896. [PMID: 31921071 PMCID: PMC6928123 DOI: 10.3389/fmicb.2019.02896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
Soil is a diversified and complex ecological niche, home to a myriad of microorganisms particularly bacteria. The physico-chemical complexities of soil results in a plethora of physiological variations to exist within the different types of soil dwelling bacteria, giving rise to a wide variation in genome structure and complexity. This serves as an attractive proposition to analyze and compare the genome of a large number soil bacteria to comprehend their genome complexity and evolution. In this study a combination of codon usage and molecular phylogenetics of the whole genome and key housekeeping genes like infB (translation initiation factor 2), trpB (tryptophan synthase, beta subunit), atpD (ATP synthase, beta subunit), and rpoB (RNA polymerase, beta subunit) of 92 soil bacterial species spread across the entire eubacterial domain and residing in different soil types was performed. The results indicated the direct relationship of genome size with codon bias and coding frequency in the studied bacteria. The codon usage profile demonstrated by the gene trpB was found to be relatively different from the rest of the housekeeping genes with a large number of bacteria having a greater percentage of genes with Nc values less than the Nc of trpB. The results from the overall codon usage bias profile also depicted that the codon usage bias in the key housekeeping genes of soil bacteria was majorly due to selectional pressure and not mutation. The analysis of hydrophobicity of the gene product encoded by the rpoB coding sequences demonstrated tight clustering across all the soil bacteria suggesting conservation of protein structure for maintenance of form and function. The phylogenetic affinities inferred using 16S rRNA gene and the housekeeping genes demonstrated conflicting signals with trpB gene being the noisiest one. The housekeeping gene atpD was found to depict the least amount of evolutionary change in the soil bacteria considered in this study except in two Clostridium species. The phylogenetic and codon usage analysis of the soil bacteria consistently demonstrated the relatedness of Azotobacter chroococcum with different species of the genus Pseudomonas.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Barnan K. Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|